Endothelial HIF-2 mediates protection and recovery from ischemic kidney injury

Pinelopi P. Kapitsinou, … , Timothy A. Sutton, Volker H. Haase

The hypoxia-inducible transcription factors HIF-1 and HIF-2 mediate key cellular adaptations to hypoxia and contribute to renal homeostasis and pathophysiology; however, little is known about the cell type–specific functions of HIF-1 and HIF-2 in response to ischemic kidney injury. Here, we used a genetic approach to specifically dissect the roles of endothelial HIF-1 and HIF-2 in murine models of hypoxic kidney injury induced by ischemia reperfusion or ureteral obstruction. In both models, inactivation of endothelial HIF increased injury-associated renal inflammation and fibrosis. Specifically, inactivation of endothelial HIF-2α, but not endothelial HIF-1α, resulted in increased expression of renal injury markers and inflammatory cell infiltration in the postischemic kidney, which was reversed by blockade of vascular cell adhesion molecule-1 (VCAM1) and very late antigen-4 (VLA4) using monoclonal antibodies. In contrast, pharmacologic or genetic activation of HIF via HIF prolyl-hydroxylase inhibition protected wild-type animals from ischemic kidney injury and inflammation; however, these same protective effects were not observed in HIF prolyl-hydroxylase inhibitor–treated animals lacking endothelial HIF-2. Taken together, our data indicate that endothelial HIF-2 protects from hypoxia-induced renal damage and represents a potential therapeutic target for renoprotection and prevention of fibrosis following acute ischemic injury.

Find the latest version:
https://jci.me/69073/pdf
Endothelial HIF-2 mediates protection and recovery from ischemic kidney injury

Pinelopi P. Kapitsinou,1,2 Hideto Sano,1,2 Mark Michael,1,2 Hanako Kobayashi,1,2 Olena Davidoff,1,2 Aihua Bian,3 Bing Yao,1 Ming-Zhi Zhang,1 Raymond C. Harris,1 Kevin J. Duffy,4 Connie L. Erickson-Miller,5 Timothy A. Sutton,6 and Volker H. Haase1,2

1Department of Medicine, 2Departments of Cancer Biology and Molecular Physiology and Biophysics, and 3Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA. 4Cancer Research and 5Haemoglobin DPU, GlaxoSmithKline, Collegeville, Pennsylvania, USA. 6Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA.

The hypoxia-inducible transcription factors HIF-1 and HIF-2 mediate key cellular adaptations to hypoxia and contribute to renal homeostasis and pathophysiology; however, little is known about the cell type–specific functions of HIF-1 and HIF-2 in response to ischemic kidney injury. Here, we used a genetic approach to specifically dissect the roles of endothelial HIF-1 and HIF-2 in murine models of hypoxic kidney injury induced by ischemia reperfusion or ureteral obstruction. In both models, inactivation of endothelial HIF increased injury-associated renal inflammation and fibrosis. Specifically, inactivation of endothelial HIF-2α, but not endothelial HIF-1α, resulted in increased expression of renal injury markers and inflammatory cell infiltration in the postischemic kidney, which was reversed by blockade of vascular cell adhesion molecule-1 (VCAM1) and very late antigen-4 (VLA4) using monoclonal antibodies. In contrast, pharmacologic or genetic activation of HIF via HIF prolyl-hydroxylase inhibition protected wild-type animals from ischemic kidney injury and inflammation; however, these same protective effects were not observed in HIF prolyl-hydroxylase inhibitor–treated animals lacking endothelial HIF-2. Taken together, our data indicate that endothelial HIF-2 protects from hypoxia-induced renal damage and represents a potential therapeutic target for renoprotection and prevention of fibrosis following acute ischemic injury.

Introduction

ECs play a critical role in the pathophysiology of acute and chronic ischemic injuries, as they are involved in the regulation of vascular tone, trafficking of inflammatory cells, delivery of nutrients and oxygen to surrounding cells, wound healing, and tissue repair (1). Because of its highly specialized vascular anatomy and the relatively low tissue pO2 levels, the kidney is particularly susceptible to hypoxic injury, which in hospitalized patients frequently results in acute ischemic renal failure, a condition associated with high mortality and transition to chronic kidney disease (CKD) (2, 3). In the hypoxic and/or ischemic kidney, endothelial damage leads to multiple pathologic changes, which include increased vascular permeability, enhanced endothelium-leukocyte interaction with concomitant capillary obstruction and inflammatory cell infiltration, abnormal coagulation, vasoconstriction, and altered vascular growth factor regulation (4, 5).

Like other cell types, ECs respond to changes in tissue pO2 levels by multiple hypoxic signaling mechanisms. Central mediators of cellular adaptation to O2 deprivation are hypoxia-inducible transcription factors HIF-1 and HIF-2, pleiotropic heterodimeric basic helix-loop-helix transcription factors that regulate cellular energy metabolism, angiogenesis, erythropoiesis, apoptosis, and cell proliferation (6). The activity of HIFs is controlled by O2–, iron– and ascorbate-dependent dioxygenases, also known as prolyl-4-hydroxylase domain-containing proteins 1–3 (PHD1–3), which use 2-oxoglutarate (2OG) as substrate for the hydroxylation of specific proline residues within the oxygen-sensitive HIF-α subunit. This permits binding to the pVHL-E3 ubiquitin ligase complex and results in proteasomal degradation of HIF-α under normoxia (7).

In the noninjured kidney, HIF-1α has been detected in tubular epithelium and in ECs following exposure to acute hypoxia, while HIF-2α is predominantly expressed in ECs and glomerular cells as well as in peritubular interstitial cells, where it regulates erythropoietin (EPO) synthesis (8, 9). Increased expression of HIF-1α and HIF-2α has been found in both acute and chronic kidney injury; however, the role of HIF-1 and HIF-2 in the pathogenesis of renal diseases is not clear (9). In particular, little is known about cell type–specific functions of individual HIF homologs in the context of hypoxic kidney injury (HIF-1 versus HIF-2). HIF has been shown to promote tolerance to acute ischemia, as systemic HIF activation protects from ischemia-reperfusion injury (IRI) in animal models of acute renal failure (10–12). This protective role of HIF in kidney injury appears to be dependent on the timing of its activation (12, 13).

To understand the effects of endothelial HIF signaling on hypoxic kidney injury and to specifically dissect the individual roles of EC-derived HIF-1 and HIF-2 in renal repair, we used a genetic approach to activate or ablate both HIF homologs either simultaneously or individually by Cre-loxP–mediated recombination. Here, we show that endothelial HIF protects from renal injury and inflammation induced by either renal ischemia-reperfusion or unilateral ureteral obstruction (UUO). We furthermore demonstrate that endothelial HIF-1 and HIF-2 play distinct roles in the pathogenesis of renal IRI, as HIF-2 and not HIF-1 suppressed IRI-associated inflammation and injury and mediated the renoprotective effects of systemic HIF prolyl-hydroxylase inhibition.
Taken together, our studies identify endothelial HIF-2 as a critical therapeutic target that can be activated pharmacologically to induce renoprotection.

Results

Generation and phenotypic characterization of mice with EC-specific inactivation of HIF-1α and HIF-2α. To investigate the role of endothelial HIF in the context of kidney injury, we crossed the VE-cadherin–Cre (Cdh5-Cre) transgene (14) to conditional Hif1a and Hif2a (Epas1) alleles (15, 16) and generated mice that lacked both HIF-α homologs in ECs, Cdh5-Cre Hif1a flox/flox Hif2a flox/flox, herein referred to Hif1aHif2a–/– mutants. Genomic PCR analysis was used to assess recombination in adult lungs, heart, liver, and kidneys (Supplemental Figure 1A; supplemental material available online with this article; doi:10.1172/JCI69073DS1). To further characterize the degree of EC recombination, Cdh5-Cre mice were intercrossed with double-fluorescent Cre-reporter mice, which expressed red fluorescent membrane-bound tdTomato prior to excision and GFP membrane-bound EGFP following excision of a floxed stop cassette (ref. 17 and Figure 1A). CD31-positive/CD45-negative single cell suspensions isolated from lung and kidney tissue were analyzed for EGFP expression by FACS. Compared with lungs, where 95% ± 2% of ECs stained positive for EGFP, Cre-recombinase was active in 52% ± 7% of ECs isolated from renal tissue (n = 3–5; Figure 1A). EGFP was uniformly distributed in both glomerular ECs and peritubular capillaries of the renal interstitium (Supplemental Figure 1B), and no preferential expression of endothelial markers CD31 and CD34 cells was detected in EGFP-positive and EGFP-negative ECs by FACS analysis (data not shown).

Hif1aHif2a–/– mice were born at the expected Mendelian frequency and did not display any apparent pathology (Supplemental Figure 1C). A defect in erythropoiesis, which had been previously reported in hypomorph Hif2a knockdown mice (18), was not observed in Hif1aHif2a–/– mutants (Supplemental Table 1). Furthermore, measurements of renal function parameters, such as blood urea nitrogen (BUN), serum electrolytes, urine albumin, and Epo levels, revealed no significant differences between Hif1aHif2a–/– and Cre-negative Hif1a flox/flox Hif2a flox/flox mice, herein referred to as Cre– littermate controls (Supplemental Table 1). These results are consistent with normal morphology of Hif1aHif2a–/– kidneys stained with H&E (Sup-
We next performed immunohistochemical analysis of CD31 and cablin expression to examine the peritubular capillary density and architecture in Hif1aHif2a–/– mutants. For cablin immunohistochemistry, we used an antibody that preferentially stains the basal lamina of peritubular renal capillaries (19). Using light and confocal laser scanning microscopy of CD31- and cablin-stained kidney sections, we did not detect significant differences in peritubular capillary density or morphology between Hif1aHif2a–/– mice and Cre– littermates (Figure 1, B and C). We next investigated whether HIF inactivation in ECs affected vascular permeability. Increased extravasation of Evans blue dye (EBD) was observed in the lungs from Hif1aHif2a–/– mice (858 ± 231 μg/g tissue vs. 435 ± 75 μg/g tissue in control littermates, n = 4–6, P = 0.04; Figure 1D), which is in agreement with a prior study that reported enhanced vascular permeability in lungs of mice lacking endothelial HIF-2α (20). However, vascular permeability in mutant kidneys was not significantly different from that of controls using this assay (Figure 1D), which could have resulted from differences in recombination efficiency or organ-specific HIF functions.

Endothelial HIF protects from UUO-induced renal injury and inflammation. The cell type–specific functions of HIF in hypoxic kidney injury are not well understood. To gain initial insights into...
the role of endothelial HIF in this context, we chose the UUO model, a simple and nonreversible model of rapidly progressing fibrosis and capillary injury, in which kidneys are characterized by hypoxia and HIF activation (21). We first examined renal injury responses in

Hif1aHif2a−/− mice subjected to UUO at day 8 after ligature, a time point characterized by marked capillary rarefaction, interstitial fibroblast and ECM expansion, increased mononuclear cell infiltration, tubular atrophy, and apoptosis (21). Quantitative analysis of ECM collagen accumulation by Sirius red morphometry revealed increased collagen content in

Hif1aHif2a−/− mice compared with controls (increase by 28%, n = 11–12, P = 0.39; Figure 2A). By day 12, this difference became statistically significant and amounted to an approximately 32% increase (n = 10–11, P = 0.032; Figure 2A). Capillary density as assessed by CD31 immunohistochemistry was reduced by 25% in the cortex of mutant kidneys (n = 4–6, P = 0.03; Figure 2B), while significant differences were not detected in the renal medulla. Furthermore, the reduction in cortical capillary density was reflected in a 2.4-fold decrease in Cd31 mRNA isolated from total kidney homogenates (n = 4–6, P = 0.009; Figure 2B). Since ECs play an important role in the regulation of inflammation, which is a characteristic feature of tubulointerstitial kidney injury, we next assessed macrophage numbers by immunohistochemistry. The number of F4/80-positive cells was increased by approximately 25% in mutant UUO kidneys (171 cells/high-power field [hpf] ± 15 vs. 131 cells/hpf ± 8 in controls, n = 10–11, P = 0.038; Figure 2C).

To further investigate whether EC-derived HIF regulates macrophage polarization in this model, we analyzed the expression of M1 and M2 polarization markers in CD11b-positive cells isolated from Hif1aHif2a−/− or Cre− UUO kidneys by magnetic bead cell separation. We did not find clear evidence of differences in macrophage polarization, as transcript levels of genes associated with M1 (IL1b, TNFa, and iNOS) or M2 polarization (IL10, mannose receptor [MR] and arginase 1 [Arg1]) did not differ between the 2 genotypes (Supplemental Figure 2). Taken together, our data demonstrate that inactivation of HIF in ECs exacerbated UUO-induced fibrosis and led to increased capillary rarefaction and macrophage accumulation, but not to alterations in macrophage M1/M2 polarization.

Endothelial HIF promotes recovery from renal IRI and inhibits IRI-associated fibrosis. Our findings in a nonreversible renal injury model suggested that endothelial HIF plays a critical role in the regulation of inflammation and capillary maintenance. We therefore hypothesized that HIF signaling in ECs may be important for tissue repair under conditions of reversible hypoxic renal injury. To test this hypothesis, we used a model of acute IRI induced by renal pedicle clamping. Hif1aHif2a−/− mutants were subjected to unilateral renal ischemia-reperfusion. Scale bars: 100 μm.

Figure 3

Endothelial HIF promotes recovery from renal IRI. (A) Schematic illustration of injury model and representative images of H&E-stained sections of injured kidneys from Hif1aHif2a−/− mutants and Cre− littermate controls at 2 hours, 1 day, and 3 days following unilateral IRI. Arrows point to necrotic tubules; asterisks indicate tubules with cast-forming material. (B) Left panel: time course analysis of Kim1 mRNA levels in injured kidneys. Right panel: mRNA levels of Kim1 in injured and contralateral kidneys at day 3 after IRI (n = 5–6). (C) BUN levels at day 1 and 3 following bilateral renal IRI in Hif1aHif2a−/− and controls (n = 6–14). Graph bars represent mean values ± SEM; *P < 0.05. IRI, kidney subjected to unilateral renal ischemia-reperfusion.
levels (n = 5–6; Figure 3, A and B). The expression of Kim1, which encodes a transmembrane tubular protein, correlates positively with the degree of renal damage in both acute and chronic injuries (22). On day 3 after IRI, differences in Kim1 levels became apparent between mutant and control kidneys (1.6-fold increase in mutants, n = 5, P = 0.038; Figure 3B), while overall Kim1 expression levels were reduced in both genotypes compared with day 1 after IRI. These molecular differences were also reflected in significantly different morphologic injury scores (Supplemental Figure 3).

To investigate whether changes in morphologic injury score and Kim1 mRNA levels correlated with renal function, Hif1αHif2α–/– mice and Cre– littermates were subjected to bilateral renal artery occlusion. To produce sufficient renal injury, both renal pedicles were clamped for 40 minutes simultaneously. As shown in Figure 3C, the degree of BUN elevation was similar on day 1 after IRI (102 ± 4 mg/dl vs. 100 ± 4 mg/dL in controls, n = 12–14), whereas BUN levels on day 3 after IRI were significantly more elevated in Hif1αHif2α–/– mutants than in controls (97 ± 9 mg/dl vs. 67 ± 12 mg/dl respectively, n = 7–6; P = 0.002). Together with findings from the morphologic and molecular analysis of Hif1αHif2α–/– mice, the relative increase in BUN levels at day 3 and not at day 1 suggested that endothelial HIF promotes recovery from renal IRI.

To determine whether inactivation of endothelial HIF-1α and HIF-2α affected the development of IRI-associated fibrosis, mice were subjected to unilateral renal artery clamping and analyzed 9 days following reperfusion. EC-specific Hif1αHif2α–/– mice accumulated more collagen in cortex and medulla, as assessed by Sirius red morphometry (cortex: increase by 53%, P = 0.006; medulla: increase by 32%, n = 4, P = 0.02; Figure 4A), which associated with increased transcript levels of collagen 1α1 (Col1α1), Col18a1, lysyl oxidase-like 2 (Loxl2) and Tgfb1 (n = 4, P < 0.05; Figure 4B). Since significant capillary rarefaction is frequently observed in kidneys with previous ischemic injury (4), we examined peritubular capillary density using CD31 immunohistochemistry and found no differences between mutants and controls (Figure 4C). Next, we assessed the degree of macrophage accumulation in post-IRI kidneys and found an approximately 30% increase in the number of F4/80-positive cells that infiltrated Hif1αHif2α–/– kidneys (220 ± 23 cells/hpf vs. 171 ± 7 cells/hpf, n = 4, P = 0.078; Figure 4D). In summary, our data demonstrate that inactivation of endothelial HIF negatively affected recovery from IRI and worsened fibrosis and inflammation found in the post-IRI kidney.

Endothelial HIF suppresses IRI-associated renal inflammation

Our findings suggested that endothelial HIF protects from ischemic renal injury.

Figure 4

Inactivation of endothelial HIF promotes IRI-associated tubulointerstitial fibrosis. (A) Representative images of Sirius red–stained kidneys from EC-specific Hif1αHif2α–/– and Cre– control mice at day 9 after IRI. Right panel shows quantification of Sirius red–positive area in cortex and medulla (n = 4). (B) RT-PCR analysis of Col18a1, Loxl-2, Tgfb1, and Col1α1 mRNA levels in mutant and control kidneys at day 9 following IRI (n = 4). (C and D) Representative images of CD31– and F4/80–positive cell number/hpf (n = 4–5). Graph bars represent mean values ± SEM; *P < 0.05; **P < 0.01. Scale bars: 100 μm.
injury by modulating inflammatory responses, which play a major role in the pathophysiology of IRI. To gain mechanistic insights, we characterized the time course of leukocyte infiltration by quantitative assessment of CD45 staining in injured kidneys. We found that CD45 expression in $\text{Hif1aHif2a}^{-/-}$ mutants correlated with the degree of Kim1 upregulation (Figure 5A). While no significant differences were found at the 2-hour and 1-day time points, CD45 staining was increased by 8.6-fold in mutants at day 3 after IRI (19.2% ± 5.3% vs. 2.2% ± 3.3% in controls, $n = 6$, $P = 0.002$; Figure 5A). Time-course analysis of neutrophil infiltration furthermore revealed that the severity of inflammation at days 1 and 3 after IRI remained unchanged in $\text{Hif1aHif2a}^{-/-}$ kidneys, while neutrophil numbers in $\text{Cre}^{-/-}$ mice were decreased by day 3, suggesting that the resolution of IRI-associated inflammation was significantly impaired in $\text{Hif1aHif2a}^{-/-}$ mice.

As HIF has been shown to modulate EC barrier function (20, 23), we tested whether alterations in renal vascular permeability contributed to increased leukocyte content in $\text{Hif1aHif2a}^{-/-}$ kidneys. For this purpose, we performed time-course analysis of EBD permeability and found no significant differences between $\text{Hif1aHif2a}^{-/-}$ kidneys and control mice at all time points (Supplemental Figure 4). This finding suggested that altered vascular permeability is unlikely to have contributed to increased neutrophil accumulation in $\text{Hif1aHif2a}^{-/-}$ kidneys.

Because ECs regulate inflammation in injured tissues through modulation of neutrophil adhesion, we next examined mRNA expression levels of endothelial adhesion molecules by real-time PCR. Transcripts levels for E-selectin (Sele), which specifically regulates leukocyte rolling on ECs, were maximally induced 2 hours after IRI and did not differ between mutant and control mice at all time points (Figure 5B). Similarly, significant differences were not found for intercellular adhesion molecule-1 (Icam1), a key regulator of leukocyte adhesion and transendothelial migration (Figure 5B). In contrast, mRNA levels for vascular cell adhesion molecule-1 (Vcam1) were significantly increased in $\text{Hif1aHif2a}^{-/-}$ kidneys on day 3 after IRI (a 1.9-fold difference compared with controls, $n = 5–6$, $P < 0.05$; Figure 5B).

To investigate to what degree increased Vcam1 expression contributed to the exacerbation of renal injury in endothelial $\text{Hif1aHif2a}^{-/-}$ mutants, we administered inhibitory monoclonal antibodies directed against VCAM1 and its ligand very late antigen-4 (VLA4). Specifically, $\text{Hif1aHif2a}^{-/-}$ and $\text{Cre}^{-/-}$ mice were treated with anti-VCAM1/VLA4 antibodies or unspecific control IgG at the time of renal clamping and at day 2 after IRI (Figure 6). Renal injury was assessed on day 3 after IRI by morphological evaluation and analysis of Kim1 mRNA expression levels. We found that kidney injury was ameliorated in $\text{Hif1aHif2a}^{-/-}$ mice in response to VCAM1 blockade, while treatment of $\text{Cre}^{-/-}$ mice did not result in differences compared with IgG-treated controls (Figure 6). Renal myeloperoxidase (MPO) activity, a marker of neutrophil accumulation, was reduced 2.7-fold in $\text{Hif1aHif2a}^{-/-}$ mutants treated with anti-VCAM1/VLA4 antibodies compared with controls ($P < 0.05$) (Figure 6A). In line with decreased inflammation were decreased
transcript levels of Vcam1 and Icam1 (Figure 6A). In summary, our data demonstrate that persistent inflammation in Hif1αHif2α−/− IRI kidneys resulted from the increased expression of Vcam1 and suggest that endothelial HIF may suppress IRI-associated inflammation through modulation of EC-neutrophil interaction during the recovery phase from injury.

Inactivation of endothelial HIF-2α but not HIF-1α impairs recovery from IRI-associated inflammation. To dissect the contribution of individual HIF homologs to IRI-associated inflammation, we used the Cdh5-Cre transgene to generate mice that were deficient for either HIF-1α or HIF-2α, from herein referred to as Hif1α−/− or Hif2α−/− mutants. EC-specific Hif1α−/− or Hif2α−/− mutants were subjected to unilateral renal artery clamping for 25 minutes and analyzed on day 3 after IRI. CD45-positive cell infiltration increased by 3-fold in post-IRI Hif2α−/− kidneys compared with Cre− littermates, whereas significant differences were not detected between injured Hif1α−/− and Cre− kidneys (Figure 7A). Similarly to Hif1αHif2α−/− kidneys, CD45-positive cell infiltration in Hif2α−/− kidneys correlated with Vcam1 mRNA
expression (n = 5; Figure 7B), which was upregulated by approximately 5-fold compared with controls, while Vcam1 levels in Hif1a−/− kidneys did not differ from those of controls (Supplemental Figure 5 and Figure 7C). Increased inflammation in Hif2a−/− mutants was associated with increased injury based on morphologic criteria (Supplemental Figure 5) and on Kim1 expression levels (2.5-fold upregulation, n = 6, P = 0.02; Figure 7C). In contrast, histological damage and Kim1 mRNA levels in Hif1a−/− kidneys were not different from those of controls (Supplemental Figure 5 and Figure 7C), indicating that endothelial HIF-1 and HIF-2 play distinct roles in the development of inflammation and injury associated with renal IRI.

Expression of Cre recombinase under control of the Cdh5 promoter has been demonstrated in hematopoietic cells (14). Although recombination analysis in our model indicated limited activity of Cdh5-Cre in the bone marrow (∼35% of bone marrow cells, data not shown), we performed bone marrow transplantation experiments to assess for a potential contribution of hematopoietic cells to the exacerbation of renal injury in Hif2a−/− mutants. For this we transplanted bone marrow cells derived from Hif2a−/− mutants or WT mice into lethally irradiated WT mice. We predicted that a significant contribution of Hif2a−/− bone marrow–derived cells would exacerbate renal injury in a WT background. However, transplantation of Hif2a−/− bone marrow into WT mice failed to worsen the degree of renal injury and inflammation compared with WT bone marrow (Supplemental Figure 6). We therefore concluded that Cdh5-Cre–mediated HIF-2 inactivation in hematopoietic cells alone did not affect the outcome of IRI in our model. Taken together, our combined data demonstrate that endothelial HIF-2 plays a specific and critical role in the development of renal injury and inflammation associated with IRI.

Inactivation of endothelial PHD2 attenuates renal IRI and suppresses VCAM1-mediated inflammatory cell adhesion. Based on our findings that inactivation of endothelial HIF exacerbates postischemic renal injury and inflammation, we investigated whether EC-specific activation of HIF would be sufficient to induce renoprotection. To address this question, we crossed Cdh5-Cre transgenic mice with mice homozygous for a floxed Phd2 allele (24), and generated Cdh5-Cre Phd2 flox/flox mice, herein referred to as Phd2−/− mutants. Because PHD2 is the main HIF prolyl-hydroxylase that targets HIF for degradation under normoxia, we predicted that EC-specific loss of Phd2 would result in HIF stabilization, which we validated by immunoblot and RT-PCR analysis of HIF target genes (data not shown). Remarkably, Phd2−/− mutants displayed attenuated kidney injury on day 3 after IRI compared with Cre− littermates, as evidenced by substantial improvements in histological injury scores and Kim1 transcript levels (Figure 8A). Furthermore, injured Phd2−/− kidneys were characterized by approximately 3.5- and 2.4-fold reduction in Vcam1 and Icam1 mRNA levels, respectively, compared with controls (Figure 8B).
To assess whether the effects of endothelial PHD inactivation on Vcam1 expression were cell autonomous, we conducted hypoxia-reoxygenation experiments in vitro with HUVECs in conjunction with pharmacologic HIF prolyl-hydroxylase inhibition. For this we used dimethyloxalylglycine (DMOG), a frequently used cell-permeable pan-HIF prolyl-hydroxylase inhibitor that is capable of effectively stabilizing HIF-α in vitro and in vivo (25). To define the effects of HIF prolyl-hydroxylation on hypoxia-reoxygenation–induced expression of EC-adhesion molecules, HUVECs were incubated for 18 hours at 0.5% O2 in the absence or presence of 1 mM DMOG followed by reoxygenation for 6 hours in the presence of 1 ng/ml TNF-α (Supplemental Figure 7). Hypoxia-reoxygenation resulted in an 8- and 23-fold increase of ICAM1 and VCAM1 transcript levels, respectively, whereas treatment with DMOG completely abolished the effects of hypoxia-reoxygenation on EC adhesion molecule expression (Figure 8C). Similarly, pretreatment with DMOG blunted hypoxia-reoxygenation-induced adhesion of monocytes (THP-1 cells) to HUVECs (Figure 8C).

Endothelial HIF-2 is required for renoprotection induced by systemic HIF prolyl-hydroxylase inhibition. We next sought to determine whether pharmacologic activation of endothelial HIF-2 could be used to protect from renal injury and inflammation. We previously reported that GSK1002083A, herein referred to as PHI, a structural 2OG analog, stabilizes both HIF-1α and HIF-2α, induces HIF-regulated genes in the kidney, and protects from renal IRI (8, 12). We administered 3 doses of PHI to WT mice subjected to 25 minutes of unilateral renal artery clamping (for dosing regimen, see Figure 9A). PHI treatment attenuated renal injury at day 3 after IRI compared with vehicle-treated controls based on morphologic injury score treatment with DMOG blunted hypoxia-reoxygenation-induced adhesion of monocytes (THP-1 cells) to HUVECs (Figure 8C). Taken together, our studies suggest that inhibition of HIF prolyl-hydroxylation in ECs is sufficient to induce renoprotection and to suppress inflammatory responses.
Figure 9
Renoprotection induced by systemic HIF prolyl-hydroxylase inhibition requires endothelial HIF-2. (A) Scheme of the experimental protocol and representative images of H&E-stained kidney sections from vehicle- or PHI-treated WT animals on day 3 after IRI. Arrow indicates tubular necrosis. Hatch mark shows dilatation. Asterisk indicates casts. Bottom panel on the right shows corresponding Kim1 mRNA levels (n = 6). (B) Representative images of CD45-stained sections from injured kidneys of vehicle- or PHI-treated WT animals. Graph shows quantitative analysis of CD45-positive area (n = 6). (C) Relative levels of Vcam1 and Icam1 mRNA (n = 6). (D) Representative images of H&E-stained kidney sections from PHI- or vehicle-treated EC-specific Hif2a-/- mutants and corresponding Kim1 mRNA levels (n = 4–5). Arrows depict tubular necrosis. Asterisks indicate casts. (E) Renal transcript levels of Vcam1 and Icam1 in PHI- or vehicle-treated Hif2a-/- mice (n = 4–5). (F) Schematic depicting the role of the endothelial PHD/HIF-2 axis in renal ischemic injury. Graph bars represent mean values ± SEM. *P < 0.05; **P < 0.01. Scale bars: 100 μm. PHI, HIF prolyl-hydroxylase inhibitor; veh, vehicle (1% methylcellulose).
and Kim1 expression \((n = 6, P < 0.05; \text{Figure 9A and Supplemen-}
\text{tal Figure 8})\). Renoprotection was furthermore associated with a reduction in CD45-positive leukocyte content (3-fold reduction compared with controls \(n = 6, P < 0.01; \text{Figure 9B}\)) and reduced expression of Vcam1 and Icam1 transcripts (4.2- and 4.1-fold, \(P = 0.04\) and \(P = 0.004\) respectively; \(n = 6; \text{Figure 9C}\)), while we did not observe differences in Slec mRNA expression. We next investigated the contribution of endothelial HIF-2α to renoprotection induced by systemic PHI administration. Since endothelial HIF-2 regulated IRI-associated inflammation, we hypothesized that PHI-induced protection was at least in part due to endothelial HIF-2 activation. To test this hypothesis, Hf2a−/− mice were treated with PHI or vehicle alone, subjected to unilateral renal IRI, and analyzed on day 3 after IRI. In contrast with WT mice, PHI treatment did not induce protection in Hf2a−/− mice when compared with treatment with vehicle alone. Morphologic injury scores and Kim-1, Vcam1, and Icam1 mRNA levels were not different from those of vehicle-only–treated Hf2a−/− mice, indicating that endothelial HIF-2α is required for PHI-induced renoprotection (Figure 9, D and E, and Supplemental Figure 8). Taken together, our studies identified endothelial HIF-2α as a critical pharmacologic target that mediates the antiinflammatory and renoprotective effects of HIF-prolyl hydroxylase inhibition (Figure 9F).

Discussion

In the present study, we used a genetic approach to dissect the role of endothelial HIF-1 and HIF-2 under conditions of hypoxic and/or ischemic renal injury. Utilizing different kidney injury models and conditional knockout strains in which both HIF homologs were activated or inactivated either simultaneously or individually, we provide experimental evidence that endothelial HIF-2, but not HIF-1, regulates renal inflammation, likely through suppression of Vcam1. We furthermore identify endothelial HIF-2α as a therapeutic target that, when activated pharmacologically, has the potential to protect kidneys from the long-term sequelae of acute kidney injury by suppressing inflammation and by promoting tissue repair.

Mice with EC-specific inactivation of both HIF-1α and HIF-2α using Cdh5-Cre developed normally, were fertile, and did not display major vascular abnormalities. This was a surprising finding, as the absence of a significant vascular phenotype in EC-specific conditional knockout mice that lacked either HIF-1α or HIF-2α was attributed to functional redundancy between HIF-1 and HIF-2 (20, 26, 27). In contrast, Tie2-Cre–mediated inactivation of the aryl-hydrocarbon receptor nuclear translocator (ARNT), which functions as the HIF-β subunit, led to the development of abnormal hepatic vasculature, liver necrosis, degenerative lesions in cardiac myocytes, and neonatal lethality (28). In addition to heterodimerization with HIF-α, ARNT is an obligate binding partner of the aryl-hydrocarbon (dioxin) receptor (AHR) and is involved in executing xenobiotic stress responses (29). It is therefore likely that the vascular phenotype in Arnt−/− mice was not due to loss of HIF function, but rather to abrogated AHR signaling. Alternatively, the differences between our Cdh5-Cre–based model and the previously reported Tie2-Cre–based Arntfloxflox model might be related to spatio-temporal differences in Cre recombinase activity, as mice with germ line inactivation of either HIF-1α or HIF-2α or mice that expressed a dominant-negative form of endothelial HIF died in utero from cardiovascular malformations (15, 30–32).

Our data support a critical role for endothelial HIF-2α, but not HIF-1α, in the regulation of IRI-associated inflammation and recovery from kidney injury. This finding was surprising as, based on functional and genome-wide transcriptional analyses, it is clear that both HIFs mediate endothelial hypoxia responses (20, 33–35). Furthermore, endothelial HIF-1 and HIF-2 are both involved in the regulation of tumor angiogenesis and wound healing (20, 26, 35, 36). In our study, we found that inactivation of endothelial HIF-2α impaired the resolution of IRI-associated renal inflammation, which worsened fibrosis and macrophage infiltration during the later phases of renal recovery. This finding is consistent with observations from experimental and clinical studies of transplant-related nephropathy, in which the degree of IRI-associated inflammation predicted posttransplant graft function and macrophage infiltration at 1 week and 6 months, respectively (37, 38).

Resolution of inflammation and recovery from IRI was delayed in Hf2a−/− mutants and was associated with elevated Vcam1 expression. Remarkably, antibody blockade of VCAM1/VLA4 was sufficient to reverse the effects of EC-specific HIF deletion, indicating that the endothelial HIF-2/VCAM1 axis played a major role in the exacerbation of renal injury associated with endothelial HIF-2 deletion. Since EC barrier function was not affected in postischemic Hf2a−/− kidneys, it is likely that dysregulated Vcam1 expression resulted in prolonged leukocyte adhesion and transendothelial migration, thus worsening inflammation in our model. This hypothesis is supported by several studies that investigated VCAM1’s role in murine models of contact dermatitis, granulomatous inflammation, and atherosclerosis and by studies in human kidney transplant biopsies (39–41). An association of Vcam1 expression levels and delayed recovery from renal injury and inflammation has also been found in rats subjected to IRI (42). While blockade of VCAM1/VLA4 ameliorated injury in Hf2a−/− mutants, it had no impact on renal outcome in WT mice. Similarly, in an ovine model of renal transplantation, blockade of VCAM1-ligand interaction via administration of anti-VCAM1 monoclonal antibodies did not alter allograft survival or mononuclear inflammation (43). Whether a certain Vcam1 expression level is required for VCAM1/VLA4 blockade to be effective is not clear. Genetic studies are needed to address the role of VCAM1 in renal IRI more conclusively. Nevertheless, our data indicate that the PHD/HIF-2/VCAM1 axis may represent an effective therapeutic target for the treatment and prevention of ischemic renal injury.

Systemic HIF activation by pharmacologic means protects from IRI in several tissues, including experimental models of acute renal failure (10–12). In contrast, animal models of CKD support both renoprotective and injury-promoting roles (21, 44–47). A major challenge has been the identification of cell types and molecular targets that mediate HIF-induced renoprotection. Interestingly, a global knockdown of HIF-2α in mice resulted in increased susceptibility to renal IRI, which was reversed by restoration of HIF-2 expression in ECs specifically, implicating endothelial HIF-2 in renal cytoprotection. It was hypothesized that renoprotection occurred through its ability to induce ROS-scavenging enzymes (48). While this study uses a different genetic approach in a background of global HIF-2 suppression and focused on the role of HIF-2 signaling on oxidative stress in the immediate post-injury phase (24 hours after reperfusion), our data identify a critical function for endothelial HIF-2α in later phases of kidney injury via regulation of inflammatory cell adhesion. Furthermore, our studies use genetic and pharmacologic means to demonstrate that
endothelial HIF-2 mediates, at least in part, the antinflammatory and renoprotective effects of pharmacologic preconditioning induced by PHD inhibitors. Our data therefore provide new insights into the cell type–specific roles of HIF transcription factors in renal disease and identify endothelial HIF-2 as a potential target for renoprotective therapies.

Methods

Generation of mice and genotyping. The generation and genotyping of Hif1α, Hif2α (also known as Epas1), and Phd2 conditional alleles have been described previously (15, 16, 24). For the inactivation or activation of HIF-1α and HIF-2α in ECs, Cdh5-Cre transgenic mice (14) were crossed to mice carrying conditional Hif1α and/or Hif2α or Phd2 alleles. The following genotypes were generated: (a) Cdh5-Cre Hif1αflox/floxHif2αflox/flox, referred to as Hif1αHif2α−/− mutants, (b) Cdh5-Cre Hif1αflox/flox, referred to as Hif1α−/−, (c) Cdh5-Cre Hif2αflox/flox, referred to as Hif2α−/− mutants, and (d) Cdh5-Cre Phd2flox/flox, referred to as Phd2−/− mutants. Mice were generated in a mixed genetic background (BALB/c, 129Sv/J, and C57BL/6). For PH1 and bone marrow transplantation experiments, WT and Hif2α−/− mutants in a C57BL/6 background were used. Littermates not carrying the Cre transgene served as control animals in all experiments. To assess recombination efficiency, Cdh5-Cre transgenic mice were crossed to ROSA26-ACTB-tTomato-EGFP reporter mice (The Jackson Laboratory, strain 007576; ref. 17).

Kidney injury models. Unilateral or bilateral IRI was induced in male mice by clamping the renal pedicle for 25 minutes (unilateral IRI) or for 40 minutes (bilateral IRI) as previously described (12). For pharmacologic HIF activation, HIF prolyl-4-hydroxylase inhibitor GSK 1002083A (GlaxoSmithKline) was dissolved in 1% methylcellulose and administered by oral gavage at a dose of 60 mg/kg. Mice subjected to renal IRI received a total of 3 doses of GSK compound at 2 days and 6 hours prior to IRI and 2 days after IRI. Blockade of VCAM1/VCAM4 interaction was performed by i.v. administration of a monoclonal antibody to VCAM1 (clone M/K 2.7; Bio X Cell) in combination with a monoclonal antibody to VLA4 (clone PS/2; Millipore) nonselective control IgG purified from rat serum (Sigma-Aldrich). For kidney IRI, mice received antibodies at the time of renal clamping and 2 days after IRI. For UUO mice underwent ligatation of the right ureter just below the renal pelvis through a back incision; contralateral kidneys were used as controls as previously described (21). For morphologic evaluation, EBD assay, gene expression, and protein analyses, kidneys were harvested below the renal pelvis through a back incision; contralateral kidneys were used as controls as previously described (21). For morphologic evaluation, EBD assay, gene expression, and protein analyses, kidneys were harvested 2 hours after IRI or on days 1, 3, or 9 after IRI. For UUO experiments, kidneys were harvested on day 8 or 12 after procedure.

Creation of chimeric mice. Bone marrow transplantation was performed as previously described (63). Briefly, recipient mice were lethally irradiated with 9 Gy via a cesium source 4 hours prior to transplantation. Bone marrow cells were harvested from the femurs and tibias of donor mice in RPMI-1640. Recipient mice were administered approximately 5 × 106 bone marrow cells in 0.2 ml medium via tail-vein injection. Five weeks after transplantation, recipient mice were subjected to unilateral renal IRI. DNA from whole blood was used to determine the degree of chimeraism by PCR.

Vascular permeability assay. Anesthetized mice were administered 1% EBD (Sigma-Aldrich) by retroorbital injection at a dose of 20 mg/kg followed by intracardial perfusion with 20 ml PBS and EDTA. Kidneys and lungs were removed and allowed to dry overnight at 55 °C; EBD was extracted in formamide (20 ml/g dry tissue; Sigma-Aldrich). Extracted EBD was measured by optical absorbance at 620 nm, and results were expressed as micrograms of EBD per dry weight of tissue in grams.

Blood, tissue, and urine analysis. Complete blood counts were determined with a Hemavet 950 analyzer (Drew Scientific). Urine albumin and creatinine concentrations were measured using the ELISA Albumewell M Test Kit (Exocel). Blood glucose, serum electrolytes and BUN were measured
with the iSTAT portable clinical analyzer (Abbott Portable Handheld Clinical Analyzers) and the QuantiChrom Urea Assay Kit (BioAssay Systems). Serum Epo levels were determined with a commercially available ELISA kit according to the manufacturer’s instructions (R&D Systems). MPO activity in kidney homogenates was measured using the MPO Colorimetric Activity Assay Kit according to the manufacturer’s instructions (Biovision) and was expressed as U/wet tissue weight.

DNA and RNA analysis. RNA was isolated with Trizol reagent (Invitrogen) followed by clean-up with the RNeasy Mini Kit (QiAGEN) according to the manufacturer’s instructions. For real-time PCR analysis, RNA was reverse transcribed and subjected to PCR amplification using either SYBR Green PCR Master Mix or TaqMan Universal PCR Master Mix on an ABI 7300 platform (Applied Biosystems). mRNA expression levels were quantified using the relative standard curve method according to the manufacturer’s instructions (Applied Biosystems). Mouse primer sequences for *Km1, Coll1a, Coll1b1, Lsd2,* and Tgfb1 have been described elsewhere (12, 21). The following mouse primer pairs were used for amplification: *CdH1*: forward, 5′-GTGTCGTCCATGGCGGAA-3′, reverse, 5′-GCACAGGACTTGCAGCAATCC-3′; *Vcam1*: forward, 5′-TAGAGTGCAAAGCTTGGG-3′, reverse, 5′-CCGGCATATACGAGTGTTGAA-3′; *Icam1*: forward, 5′-TGGATACCTGAGGATCCACA-3′, reverse, 5′-CTGCTACCTGCACTTTGCC-3′; and *Sele*: forward, 5′-AGGCAAGAGGAACGAGATT-3′, reverse, 5′-ACCATGTGCTCTTCTTCAAACG-3′. Human primer pairs were as follows: *ICAM1*: forward, 5′-CCACAGTCACCTGATGGAC-3′; reverse, 5′-AGTGTCTCCTGGCTCTGGTT-3′; *SELE*: forward, 5′-TGAACCTCAAATAGGGCAA-3′; reverse, 5′-CCTTCTCATCATTCCACATGC-3′; *VCAM1*: forward, 5′-GCTTCAGGAGCTGTAACCCC-3′, reverse, 5′-AAGGATCAGCAGCATCCT-3′. PBS was used for normalization.

Morphologic analysis. For morphologic analysis, kidneys were fixed with 10% buffered formalin. Immunofluorescence studies were carried out on tissues that were immersion fixed in 100% ice-cold methanol. Leukocyte and macrophage infiltration was assessed with a monoclonal rat anti-F4/80 antibody (eBioscience) and a monoclonal rat anti-CD45 antibody (Abcam Inc). Capillary density was examined with a polyclonal rabbit anti-cablin antibody (eBioscience) and a monoclonal rat anti-F4/80 antibody (Abcam Inc). Capillarophas porphage infiltration was assessed with a monoclonal rat anti-CD45 antibody (Abcam Inc). Capillary density was examined with a polyclonal rabbit anti-cablin antibody (eBioscience) and a monoclonal rat anti-F4/80 antibody (Abcam Inc). Capillarophas porphage infiltration was assessed with a monoclonal rat anti-CD45 antibody (Abcam Inc). Capillary density was examined with a polyclonal rabbit anti-cablin antibody (eBioscience) and a monoclonal rat anti-F4/80 antibody (Abcam Inc). Capillarophas porphage infiltration was assessed with a monoclonal rat anti-CD45 antibody (Abcam Inc). Capillary density was examined with a polyclonal rabbit anti-cablin antibody (eBioscience) and a monoclonal rat anti-F4/80 antibody (Abcam Inc). Capillarophas porphage infiltration was assessed with a monoclonal rat anti-CD45 antibody (Abcam Inc). Capillary density was examined with a polyclonal rabbit anti-cablin antibody (eBioscience) and a monoclonal rat anti-F4/80 antibody (Abcam Inc).

Statistics. All data are reported as mean values ± SEM. Statistical analyses were performed with Prism 5.0b (GraphPad Software) or R, version 2.15.1 (http://www.r-project.org). Univariate analysis was done using Student’s *t* test or the Mann-Whitney *U* test unless specified otherwise. A linear regression model was used to assess the effect of group on continuous outcome when appropriate. A 2-tailed significance level of 5% was considered statistically significant.

Study approval. All procedures involving mice were performed in accordance with NIH guidelines for the use and care of live animals and were approved by the Institutional Animal Care and Use Committee (IACUC) of Vanderbilt University.

Acknowledgments

This work was supported by the Krick-Brooks chair in Nephrology (to V.H. Haase), NIH grants (R01-DK081646 to V.H. Haase; R01-DK007124 to T.A. Sutton), the Vanderbilt University O’Brien Center (P30-DK07934), the Indiana University O’Brien Center (P30-DK079312), an AMGEN Nephrology Fellowship Grant (to P.P. Kapitsinou), and an American Heart Association National Scientist Development grant (11SDG5570023 to P.P. Kapitsinou).

Received for publication January 29, 2013, and accepted in revised form March 13, 2014.

Address correspondence to: Volker H. Haase, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, C-3119A MCN, 1161 21st Avenue So., Nashville, Tennessee 37232-2372, USA. Phone: 615.343.7254; Fax: 615.322.6854; E-mail: volker.haase@vanderbilt.edu.

Hideto Sano’s present address is: Department of Medical Physiology, Hamamatsu University School of Medicine, Hamamatsu, Japan.

7. Kaelin WG Jr, Ratcliffe PJ. Oxygen sensing by metallocporphine: forward, 5′-GAGCAAGAGGAACCAGT-3′; reverse, 5′-ACCATGTGCTCTTCTTCAAACG-3′. Human primer pairs were as follows: *ICAM1*: forward, 5′-CCACAGTCACCTGATGGAC-3′; reverse, 5′-AGTGTCTCCTGGCTCTGGTT-3′; *SELE*: forward, 5′-TGAACCTCAAATAGGGCAA-3′; reverse, 5′-CCTTCTCATCATTCCACATGC-3′; *VCAM1*: forward, 5′-GCTTCAGGAGCTGTAACCCC-3′, reverse, 5′-AAGGATCAGCAGCATCCT-3′. PBS was used for normalization.

Morphologic analysis. For morphologic analysis, kidneys were fixed with 10% buffered formalin. Immunofluorescence studies were carried out on tissues that were immersion fixed in 100% ice-cold methanol. Leukocyte and macrophage infiltration was assessed with a monoclonal rat anti-F4/80 antibody (eBioscience) and a monoclonal rat anti-CD45 antibody (Abcam Inc). Capillary density was examined with a polyclonal rabbit anti-cablin antibody (generated against recombinant protein as previously described, ref. 19) and a monoclonal rat anti-CD31 antibody (BD Biosciences). To assess ECM accumulation, we performed Sirius red staining (0.1% fast green FCF and 0.1% direct red 80 in saturated picric acid). For all morphologic quantifications, 10 random visual fields were analyzed per kidney section, and percentage of Sirius red, CD31- and CD45-positive area, or number of F4/80-positive cells were determined with ImageJ software (http://rsbweb.nih.gov/ij). The degree of renal injury was assessed morphologically by determining the percentage of dilated and cast-filled tubules and was scored semiquantitatively (0, 0%–5%; 1, 6%–10%; 2, 11%–25%; 3, 26%–45%; 4, 46%–75%; 5, 76%–100%). Fluorescence imaging was performed with a Zeiss LSM 510 confocal laser scanning microscope equipped with Ar and HeNe lasers.

FACS analysis. After perfusion with 10 ml PBS, tissues were minced and incubated in digestive solution (serum free, 0.1% collagenase A, and 100 U/ml Dnase I). Following addition of 10% FBS, cell suspensions were filtered through a 100 μm and a 40 μm nylon mesh, centrifuged (300 g, 5 minutes), resuspended in rbc lysis buffer, centrifuged, and then resuspended again in 1x PBS. Single-cell suspensions (2 x 10^6 cells/ml) were incubated with FcR-blocking reagent and labeled with APC-conjugated anti-mouse CD31 (clone 390; eBioscience) and V500-conjugated anti-CD45 (clone 30-F11; eBioscience) antibodies.

