Abolished InsP₃R2 function inhibits sweat secretion in both humans and mice

Joakim Klar,¹ Chihiro Hisatsune,² Shahid M. Baig,³ Muhammad Tariq,³ Anna C.V. Johansson,¹ Mahmood Rasool,⁴ Naveed Altaf Malik,⁵ Adam Ameur,¹ Kotomi Sugiuara,³ Lars Feuk,¹ Katsuhiro Mikoshita,² and Niklas Dahl¹

¹Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden. ²Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Saitama, Japan. ³Human Molecular Genetics Laboratory, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan. ⁴Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.

There are 3 major sweat-producing glands present in skin; eccrine, apocrine, and apoeccrine glands. Due to the high rate of secretion, eccrine sweating is a vital regulator of body temperature in response to thermal stress in humans; therefore, an inability to sweat (anhidrosis) results in heat intolerance that may cause impaired consciousness and death. Here, we have reported 5 members of a consanguineous family with generalized, isolated anhidrosis, but morphologically normal eccrine sweat glands. Whole-genome analysis identified the presence of a homozygous missense mutation in ITPR2, which encodes the type 2 inositol 1,4,5-trisphosphate receptor (InsP₃R,2), that was present in all affected family members. We determined that the mutation is localized within the pore forming region of InsP₃R,2 and abrogates Ca²⁺ release from the endoplasmic reticulum, which suggests that intracellular Ca²⁺ release by InsP₃R,2 in clear cells of the sweat glands is important for eccrine sweat production. Itpr²⁻/⁻ mice exhibited a marked reduction in sweat secretion, and evaluation of sweat glands from Itpr²⁻/⁻ animals revealed a decrease in Ca²⁺ response compared with controls. Together, our data indicate that loss of InsP₃R₂-mediated Ca²⁺ release causes isolated anhidrosis in humans and suggest that specific InsP₃R inhibitors have the potential to reduce sweat production in hyperhidrosis.

Introduction

Anhidrosis, defined as the absence of perspiration in the presence of an appropriate stimulus such as heat, exercise, or pharmacological agonists, is a rare condition that may be acquired or congenital (1, 2). The causes of anhidrosis or reduced sweating (hypohidrosis), which are heterogeneous, include sweat gland innervation defects (in disorders of the autonomous nervous system) and reduced number of functional sweat glands (in different ectodermal syndromes) (2). Reports of generalized and isolated anhidrosis with normal sweat glands (OMIM 106190) are very few (3, 4).

There are 3 types of sweat glands present in the skin: eccrine, apocrine, and apoeccrine. Of these, eccrine sweat glands have a superior maximum secretion rate (5, 6). Among mammals, humans have the highest proportion of eccrine sweat glands, which provides an advantage for thermal cooling during prolonged exercise (6). The eccrine gland consists of 2 major parts, the excretory duct and the secretory coil. The excretory duct has 2 or 3 layers of epithelial cells and consists of a straight portion leading to the skin surface and a coiled reabsorptive portion. The secretory portion consists of 3 functionally distinct cell types: granulated (dark) cells, parietal (clear) cells, and myoepithelial cells (6, 7). Upon initial stimulation of clear cells of the sweat gland by acetylcholine, intracellular Ca²⁺ increases and initiates a stepwise process leading to net loss of Na⁺, Cl⁻, and water into the glandular lumen (8).

The present study was undertaken to clarify the pathophysiological mechanisms behind isolated generalized anhidrosis in 5 members of a consanguineous Pakistani family. The segregation of the disease was suggestive of autosomal-recessive inheritance. A genome-wide search for the causative mutation revealed a candidate missense mutation for anhidrosis in ITPR2, which encodes inositol 1,4,5-trisphosphate receptor 2 (InsP₃R,2), a Ca²⁺ release channel in the endoplasmic reticulum (9–11). We also found that loss of Itpr₂ in mice (12) resulted in markedly reduced eccrine sweat production in paws. Together, our findings indicate that loss of InsP₃R₂-mediated Ca²⁺ release causes reduced sweat production and thus underlies isolated anhidrosis in the individuals investigated herein.

Results

Phenotype of affected family members. The available family members (n = 10) consisted of 5 affected individuals (aged 4, 5, 7, 10, and 11 years at time of study), 2 healthy siblings, and 3 parents (Figure 1A). Upon clinical investigation, no abnormal symptoms were observed or reported from family members beyond anhidrosis and severe heat intolerance. In the affected family members, body growth as well as teeth, hair, nails, and skin were normal. Biochemical analysis of serum and urine in affected family members VII:4 and VII:5 (aged 11 and 10 years, respectively) revealed electrolyte levels (Na⁺, K⁺, Ca²⁺, Mg²⁺, and Cl⁻) within normal ranges. S-amylase levels were also normal. Starch-iodine sweat test (6) confirmed the absence of sweating in affected individuals, and all 5 exhibited abnormal increases in skin and ear canal temperature when exposed to heat (45°C, 45% humidity), accompanied by an abnormal increase in heart rate (Figure 1, B and C). Skin biopsy
from the forearm of affected family member VII:4 demonstrated normal morphology and number of sweat glands.

Genetic analysis and identification of a candidate mutation.

We first performed autozygosity mapping on affected individuals (13) because of the consanguinity and the likely autosomal-recessive inheritance pattern for anhidrosis within this family. The analysis revealed a single homozygous region on chromosome 12p12.1-12p11.22 in all 5 affected individuals (Figure 1A). The region consists of 427 consecutive homozygous SNPs (rs1337853-rs2349565) spanning 31 genes over 3.4 Mb (GRCh37 25,703,471-29,137,928). Segregation of the candidate homozygous region in the family was confirmed with polymorphic microsatellite markers, and linkage analysis resulted in a maximum 2-point logarithm of odds (LOD) score of 3.08.
Immunostaining of InsP3R2 was positive in the clear cells of the punch biopsy from the forearm of an affected family member. InsP3R2 in forearm skin biopsies of (\(\mu\)m) a control individual and (D) affected family member VII:4. N, nerve end. dark cells or the cells of the duct (15), in (sweat glands (boxed regions) are shown enlarged. Control and patient specimens exhibited similar staining: InsP3R2 stained positive in the clear cells (CC), but not the dark cells (DC) (dashed lines). InsP3R2 was also present in cells of the excretory ducts (asterisk) with a concentration in subcellular regions lining the ducts. (C and D) Similar to InsP3R2, S100\(\beta\) staining was positive in the clear cells of the secretory coil of the eccrine sweat gland, but not in the dark cells or the cells of the duct (15). In (C) a control individual and (D) affected family member VII:4. N, nerve end. Original magnification, \(\times 10; \times 40\) (enlargements). Scale bars: 20 \(\mu\)m.

Targeted enrichment of the 3.4-Mb candidate region was performed on genomic DNA from affected members, followed by sequencing and filtering. The analysis identified a single novel coding variant: c.7492G>A in ITPR2 (NM_002223.2). The transition results in a predicted glycine-to-serine (p.G2498S) substitution, and it was present in a homozygous state in the 3 affected family members and in a heterozygous state in the 3 parents and 2 healthy siblings available for sampling (Supplemental Figure 1; supplemental material available online with this article; doi:10.1172/JCI70720DS1). The glycine residue is highly conserved along the phylogenetic scale from human to zebrafish (PhyloP score, 2.44645; GERP score, 4.43) among the 3 InsP3R subtypes as well as in the closely related ryanodine receptor 1 (RYR1; Figure 1D and ref. 10). The variant — predicted to affect protein function by PolyPhen-2 analysis (HumVar score, 1.00, probably damaging) (14) — was not found in 200 Swedish and 200 Pakistani control chromosomes, nor in 850 exomes that were available in house. Furthermore, the c.7492G>A variant is not present in the latest Exome Variant Server data release (ESP6500SI-V2; http://evs.gs.washington.edu/EVS/).

InsP3R immunohistochemistry in skin biopsies. Histology of a punch biopsy from the forearm of an affected family member confirmed normal morphology and number of sweat glands. Immunostaining of InsP3R2 was positive in the clear cells of the secretory coil of the eccrine sweat gland and was similar between control and patient samples (Figure 2, A and B). In addition, InsP3R2 expression was observed within the cells of the excretory duct and with a concentration in subcellular regions lining the ducts. To investigate the expression of the other InsP3R isoforms in eccrine sweat glands, we stained the skin biopsies for InsP3R1 and InsP3R3. Whereas InsP3R3 showed weak staining in the secretory part and a strong staining in the basal (peripheral) cell layer of the excretory duct (Supplemental Figure 2), we could not detect expressed WT and mutant InsP3R2 in DT40 chicken B lymphocytes lacking endogenous InsP3Rs (R23-11 cells) (16) and examined their channel properties by Ca\(^{2+}\) imaging. We established 3 independent cell lines expressing WT or mutated InsP3R2 and confirmed the expression of InsP3R2 protein in each stable cell line (Figure 3A). We then stimulated the cells with anti-IgM antibody to activate B cell receptors and intracellular Ca\(^{2+}\) release. In response to IgM stimulation, approximately 80% of cells expressing WT InsP3R2 showed intracellular Ca\(^{2+}\) oscillations (n = 139; Figure 3B), the typical form of InsP3R2-mediated Ca\(^{2+}\) release, consistent with previous studies (17). In contrast, cells expressing p.G2498S mutant InsP3R2 had no detectable Ca\(^{2+}\) response after IgM stimulation (n = 50; Figure 3B). The Ca\(^{2+}\) contents within the endoplasmic reticulum, as measured by passive Ca\(^{2+}\) release after Ca\(^{2+}\) pump inhibitor cyclopiazonic acid (CPA) treatment, were similar in cells expressing WT and p.G2498S mutant InsP3R2 (WT, 100% ± 20.72%, n = 3; p.G2498S, 129.97% ± 55.22%, n = 3; mean ± SD; P = NS, t test). These data strongly suggest that the p.G2498S mutation causes InsP3R2 loss of function.

Itp2\(^{-/-}\) mice exhibit hypohidrosis. To further examine the contribution of InsP3R2 to sweat production, we examined sweat secretion in Itp2\(^{-/-}\) mice, which harbor a targeted disruption of Itp2, using the starch–iodine assay (18). When pilocarpine was subcutaneously injected into the hind paws of Itp2\(^{-/-}\) mice, individual sweat glands (represented by black dots) appeared within 1 minute, and the number increased in a time-dependent manner, to 78.33 ± 10.92 dots per paw at 20 minutes (mean ± SEM, n = 7; Figure 4A). In Itp2\(^{-/-}\) mice, however, the increase in sweat gland number was significantly attenuated (24.4 ± 2.11 dots per paw at 20 minutes, n = 5; Figure 4A). In addition, the size of each black dot (presumably representing the sweat volume from a single gland) was about half the size in Itp2\(^{-/-}\) versus Itp2\(^{+/+}\) mice (Figure 4B). Similar to our analysis of human sweat glands, immunofluoresc-
cescence staining of mouse digits confirmed InsP,R2 expression in S100β-expressing cells of Itrap2+/− sweat glands, which was not seen in Itrap2−/− mice (Figure 4C).

To examine Ca2+ signals in sweat glands, we dissected out individual sweat glands from mouse paws, loaded them with the Ca2+ indicators Fura Red and Fluo4, and subjected them to stimulation with various concentrations of acetylcholine. In glands from Itrap2+/− mice, we found that the amplitude of Ca2+ signals in the secretory part increased in a dose-dependent manner (Figure 5, A and B, and Supplemental Video 1), but there were no changes in Ca2+ signals in the excretory duct (Figure 5A, arrow). We then compared the peak amplitude of Ca2+ signals in dissected Itrap2+/− and Itrap2−/− sweat glands after acetylcholine stimulation and found an approximately 40%–50% reduction in the latter at every dose tested (Figure 5, B and C). Consistent with the reduced Ca2+ signals, Western blot analysis of sweat gland lysates with anti–pan-InsP3R antibody demonstrated that total InsP3R expression in Itrap2+/− sweat glands decreased to about 40% of that of Itrap2+/+ sweat glands (Figure 5D). Thus, the extant but reduced sweat production and the residual Ca2+ signals in Itrap2−/− mouse sweat glands are likely due to expression of InsP3R1 and InsP3R3. This was further supported by the positive immunohistochemical staining for InsP3R1 and InsP3R3 in the clear cells of mouse sweat glands (Supplemental Figure 5).

Discussion

The primary goal of this study was to identify the pathophysiological mechanism leading to congenital generalized and isolated anhidrosis. The study emerged from the investigation of a consanguineous family segregating autosomal-recessive anhidrosis in 5 children. The affected individuals presented with absent eccrine sweat production and with severe and congenital heat intolerance, but no other symptoms from the skin or other ectodermal tissues, such as teeth and hair. The children exhibited normal development and were otherwise healthy. Hence, the clinical picture was not compatible with an ectodermal syndrome. Skin biopsy of an affected individual confirmed normal sweat gland morphology, suggestive of a gland-intrinsic mechanism.

Genetic analysis identified a unique transition (c.7492G>A) that predicts a missense variant (p.G2498S) in ITRP2, which encodes InsP3R2. The transition was present in a homozygous state in the affected family members and was excluded in control populations.

Intracellular Ca2+ release in clear cells of sweat glands is a known critical event for sweat induction (15), and we thus considered the mutated InsP3R2 variant to be a good candidate for the cause of anhidrosis. This hypothesis was supported by our immunostaining of sweat glands from human skin biopsies, which showed distinct expression of InsP3R2 in the secretory portion and in the reabsorbing excretory duct. Both the secretory portion and the ductal part are involved in the net production of sweat; however, the epithelium lining of the sweat duct is not freely permeable to water, which indicates that ductal reabsorption has little effect on secreted sweat volume (19). The missense variant p.G2498S is localized in the pore-forming domain (Pfam, P00502; residues 3,236–2,540) of InsP3R2. More specifically, the substitution involves the second glycine in the selectivity filter formed by a core of 5 residues, GGGXG (Figure 1D and refs. 10, 20). In rat InsP3R1 (type I-pore), the G2546 residue corresponds to InsP3R2 G2498, and mutagenesis of InsP3R1 G2546 (i.e., p.G2546A) results in inactivation of the channel activity. That is, p.G2546A mutant InsP3R1 is still able to form homotetramers but unable to mediate Ca2+ release from microsomal vesicles, and it is nonfunctional in a Ca2+ flux assay (21).

We then analyzed p.G2498S mutant InsP3R2 in a chicken cell system devoid of endogenous InsP3R, and the results were consistent with a loss-of-function effect of the p.G2498S mutation. Cells expressing the p.G2498S mutant InsP3R2 showed a complete loss of Ca2+ response upon stimulation, despite Ca2+ stores similar to those of control cells expressing WT InsP3R2. Thus, the abolished intracellular Ca2+ release from the InsP3R2 p.G2498S variant is consistent with previous studies on rat InsP3R1 with a mutation in the corresponding residue (21).

To independently assess the role of InsP3R2 in sweat production, we analyzed eccrine glands in paws of Itrap2−/− mice. We observed a 3-fold reduction in the number of pilocarpine-responsive sweat glands on Itrap2−/− mouse paws, and dissected Itrap2−/− sweat glands showed a significant reduction in Ca2+ response after acetylcholine stimulation compared with those of Itrap2+/+ mice. Together, these results indicate that InsP3R2 plays a critical role in sweat secretion in both mice and humans. However, the residual sweat production in Itrap2−/− mice is not fully consistent with the anhidrosis in the human subjects homozygous for the c.7492G>A p.G2498S) mutation. Our immunohistochemical analysis suggests that InsP3R2 and InsP3R3 are the predominant isoforms expressed in human sweat glands,

Figure 3. The p.G2498S mutation abolishes the channel activity of InsP3R2. (A) Expression of WT and mutant p.G2498S mouse InsP3R2 in 3 independent stable clones. (B) Intracellular Ca2+ signals upon IgM stimulation in R23-11 cells expressing WT and p.G2498S mouse InsP3R2 variants. Arrows denote IgM stimulation (M4) at 0.25 μg/ml. Ca2+ signals from 2 independent p.G2498S InsP3R2 clones and 1 WT InsP3R2 clone were analyzed. Representative data (ratio change of Fura-2) from 4 independent experiments are shown. Cells expressing p.G2498S InsP3R2 exhibited no detectable Ca2+ signal in response to IgM stimulation (0%; n = 50 cells). Of WT InsP3R2 cells, 78% showed Ca2+ oscillation, 14% were Ca2+ transient, and 8% exhibited no response (n = 139 cells).
insp3R is required for normal sweat production in both humans and mice. Our findings indicate that the insp3R2 isoform for exocrine function in salivary and pancreatic glands versus sweat glands. Whereas Itpr2–/– mice exhibited reduced sweat production, they do not show perturbed function of the salivary and pancreatic glands (12). Similarly, the 5 affected family members herein did not present with any abnormal symptoms besides the anhidrosis and severe heat sensitivity. The affected individuals did not report on dry mouth, reduced saliva production, or malabsorption, although minor differences cannot be excluded. Moreover, the growth curves of the patients were within normal ranges. For comparison, Itpr2–/– Itpr3–/– double-knockout mice are hypoglycemic and show growth delay related to dysfunction of the pancreas and the salivary glands (12). Thus, the contribution of insp3R2 to exocrine function is likely to be different in sweat glands than in salivary and pancreatic glands, possibly resulting from variations in the relative levels of the 3 insp3Rs. Additionally, redundant function for the insp3Rs may provide tolerance for quantitative reductions in their channel activity in distinct organs and for adequate development and functionality.

In conclusion, we identified the first mutation of insp3R2 associated with human disease. Our results demonstrated that insp3R2-mediated Ca2+ release plays an important role in sweat secretion in both humans and mice. Our findings indicate that the insp3R2 missense mutation p.G2498S underlies the isolated anhidrosis in 5 related patients and that lack of a functional insp3R2 compromised Ca2+ release, resulting in the absence of sweat production. The human phenotype was modeled in the Itpr2–/– mice, albeit with a milder phenotype corresponding to hypohidrosis. Because eccrine sweating is fundamental for thermoregulation in humans (5), we conclude that insp3R2 plays a critical role for thermal cooling. Our
findings highlight InsP$_3$R$_2$ as a potential pharmacological target in the treatment of conditions such as hyperhydrosis.

Methods

Clinical samples. A consanguineous Pakistani family with 5 children affected by severe heat intolerance was referred to the Health Division of NIBGE. Blood and urine samples were obtained from available family members, and punch skin biopsies were taken from 2 affected individuals. Consanguinity was ascertained over several generations, and 4 full siblings and 1 first cousin segregated autosomal-recessive congenital anhidrosis and severe heat intolerance (Figure 1A).

Sequencing and sequence variant detection. SNP genotyping was performed on DNA samples from 4 affected family members, using the GeneChip Mapping 250K array (Affymetrix) according to the manufacturer’s protocol. Homozygosity mapping and sorting of genomic regions were performed as described previously with the dedicated software AutoSNPa (13). A cutoff of >130 homozygous SNPs was used for selection of candidate regions. Selected regions were further investigated by genotyping all available family members with microsatellite markers. We calculated 2-point LOD scores using the MLINK program of the LINKAGE package (26), assuming autosomal-recessive inheritance, equal male/female recombination rate, full penetrance, and disease allele frequency of 0.00001. Equal allele frequencies of the genotyped markers were used in the calculations. The pedigree was drawn using Cyrillic software (version 2.1.3; Cherwell Scientific Publishing Ltd.), and haplotype analysis was performed manually. A custom enrichment design covering 7M base pairs (NimbleGen Sequence Capture Microarrays; Roche) was used to enrich for the linked region on chromosome 12 (average fold enrichment, 346). Sequencing of the enriched region was performed using the Illumina HiSeq system, and variant detection was performed using LifeScope software (version 2.1; Invitrogen). SNPs and indel data were deposited in GEO (accession no. GSE61122) and additionally stored in an in-house database together with variant annotation information obtained from dbSNP135. Prediction of possible effect on protein function was performed using PolyPhen-2 analysis (14). Exon 53 of ITPR2 (NM_002223.2) was analyzed for the identified variant by bidirectional sequencing of genomic DNA from all available family members using sense (TTGTGTCACGGCACAATTAGA) and antisense (AAAAAGATGTGCTCCTTGAAAA) primers. Sequence reactions were generated using the BigDye Terminator v3.1 Cycle Sequencing Kit (Invitrogen) according to the manufacturer’s protocol and separated on an ABI 3700 instrument (Applied Biosystems).

Immunohistochemistry. Histological analysis of skin biopsies was performed after H&E staining. Immunostaining using anti-human S100 (Z0311; Dako), InsP$_3$R$_1$ (HPA016487; Sigma-Aldrich), InsP$_3$R$_2$ (AB9074; Millipore), and InsP$_3$R$_3$ (LC3; ref. 27) antibodies was performed using a DAKO autostainer (Dako). Antibodies were detected using a DAKO Chemmate EnVision kit (Dako). Specificity of the anti-
InsP₃R₁ antibody was confirmed using Western blotting and immunocytochemistry of HeLa cells overexpressing InsP₃R₁, InsP₃R₂, or InsP₃R₃ (data not shown).

Mutagenesis and expression analysis. The Apal fragment (2.6 kb) from pBluescript II-C2 construct (28) was cloned into the Apal site of pBluescript II. Using the plasmid as a template, pG2498S mutagenesis was performed using sense (CAGGGCCTTACAGGAAATGTCG) and antisense (CAGGGCCTCAGGAATGGTCG) primers and QuickChange Site-Directed Mutagenesis Kit (Agilent Technologies). The mutated Apal fragment was replaced with the Apal fragment of pBluescript II-C2 to construct pBluescript II-C2-G2498S, and the SaI fragment from the vector was cloned into the SaI site of pBacST-neoB. Nucleotide sequences were confirmed by DNA sequencing (Applied Biosystems). Stable clones were established by transfecting the expression vectors into R2311 cells (16), as described previously (28). For expression analysis, 5.0 × 10⁵ cells were directly lysed with a SDS-PAGE sample buffer, separated by SDS-PAGE gel, and probed with anti-InsP₃R₂ antibody (AB9074; Millipore) by Western blotting.

Single-cell Ca²⁺ imaging. Cells were loaded with 5 μM Fura-2/AM (Dojindo Laboratories) for 20 minutes at room temperature in RPMI (Nacalai Tesque Inc.) containing 10% bovine serum. After washing with recording solution (115 mM NaCl, 5.4 mM KCl, 1 mM MgCl₂, 2 mM CaCl₂, 20 mM HEPES, and 10 mM glucose, pH 7.42), cells were plated on 3.5-cm glass-bottomed dishes. After resting Ca²⁺ level was recorded for 2 minutes, cells were stimulated with anti-BCR antibody (M4) at 0.25 μg/ml (16). Fura-2 fluorescent images were analyzed using an inverted microscope (ECLIPSE TE300; Nikon) and a video image analysis system (Argus-50/CA; Hamamatsu Photonics) with excitation filters at 340 ± 10 and 380 ± 10 nm, a dichroic beam splitter at 400 nm, and a bandpass emission filter at 510–550 nm.

Mouse studies. Itpr₂⁻/⁻ mice were described previously (12). Itpr₂⁻/⁻ and Itpr₂⁺/⁺ mice (3 weeks old) were anesthetized by intraperitoneal injection of 36 mg/kg ketamine (Daichi Sankyo) and 16 mg/kg xylazine (Bayer HealthCare). Mouse paws were painted with iodine (5.0% in ethanol; Sigma-Aldrich), then covered with starch solution (0.5 g/ml in mineral oil; Sigma-Aldrich). To measure sweat secretion, 50 μl SDS sample buffer. After centrifugation at 20,000 g, 15 μl of the lysate was loaded on 6.5% SDS-PAGE. The protein were transferred to PVDF membrane, blocked with PBST containing ECL advance blocking reagent (GE Healthcare), and probed with rabbit anti–pan-InsP₃R antibody (22) and mouse anti-β-actin antibody (Sigma-Aldrich). After washing with PBST, the membrane was incubated with HRP-conjugated anti-rabbit IgG and anti-mouse IgG antibodies. After washing with PBST, the membrane was incubated with HRP substrate, and chemiluminescent signals were developed with LAS-3000 (Fujifilm).

Statistics. Student’s 2-tailed t test assuming equal variance was used for statistical analysis. A P value less than 0.05 was considered significant.

Study approval. Clinical investigations of patients and family members, sweat tests, temperature measurements, and skin biopsies were carried out in accordance with the Declaration of Helsinki, and the study protocol was approved by the ethics committee of NIBGE. All participating family members and their legal guardians provided written informed consent. Animal studies were approved by the review board at RIKEN Brain Science Institute, and all animals were treated according to the ethical guidelines of the Animal Experiments Committee of RIKEN Brain Science Institute.

Acknowledgments

This work was supported in part by the Swedish Research Council (K2013-66X-10829-20-3 and 621-2009-4629) and Swedish Links, Asia (348-2008-6069); Science for Life laboratory Uppsala University and Uppsala University Hospital; Grants-in-Aid for Scientific Research (20220007, to K. Mikoshiba; 24500451, to C. Hisatsune); and The Moritani Scholarship Foundation (to C. Hisatsune). J. Klar is supported by the Swedish Society for Medical Research. We thank all family members who participated in this study. We also thank C. Yokoyama and A.V. Terashima for fruitful discussions; M.W. Sherwood, A. Miyamoto, E. Ebisu, and N. Ogawa for experimental advice and help; all staff of the Support Unit for Bio-Material Analysis RIKEN BSI Research Resources Center; and the Uppsala Genome Center for technical support.

Address correspondence to: Niklas Dahl, Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, BMC, Box 815, 751 08 Uppsala, Sweden. Phone: 46.18.4714859; E-mail: niklas.dahl@igp.uu.se. Or to: Katsuhiko Mikoshiba, Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako City 351-0198, Japan. Phone: 81.48.467.9745; E-mail: mikosiba@brain.riken.jp.