Inducible Gata1 suppression expands megakaryocyte-erythroid progenitors from embryonic stem cells

1Division of Hematology and 2Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA. 3Department of Hematology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School and Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts, USA. 4Lillhei Heart Institute and Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA. 5Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA. 6Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, and Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA. 7Department of Hematology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA.

Transfusion of donor-derived platelets is commonly used for thrombocytopenia, which results from a variety of clinical conditions and relies on a constant donor supply due to the limited shelf life of these cells. Embryonic stem (ES) and induced pluripotent stem (iPS) cells represent a potential source of megakaryocytes and platelets for transfusion therapies; however, the majority of current ES/iPS cell differentiation protocols are limited by low yields of hematopoietic progeny. In both mice and humans, mutations in the gene-encoding transcription factor GATA1 cause an accumulation of proliferating, developmentally arrested megakaryocytes, suggesting that GATA1 suppression in ES and iPS cell–derived hematopoietic progenitors may enhance megakaryocyte production. Here, we engineered ES cells from WT mice to express a doxycycline-regulated (dox-regulated) shRNA that targets Gata1 transcripts for degradation. Differentiation of these cells in the presence of dox and thrombopoietin (TPO) resulted in an exponential (at least 10^{13}-fold) expansion of immature hematopoietic progenitors. Dox withdrawal in combination with multilineage cytokines restored GATA1 expression, resulting in differentiation into erythroblasts and megakaryocytes. Following transfusion into recipient animals, these dox-deprived mature megakaryocytes generated functional platelets. Our findings provide a readily reproducible strategy to exponentially expand ES cell–derived megakaryocyte-erythroid progenitors that have the capacity to differentiate into functional platelet-producing megakaryocytes.

Introduction

Platelets and megakaryocytes generated in vitro from embryonic stem (ES) or induced pluripotent stem (iPS) cells are potentially useful for treating thrombocytopenia and for delivering pro- or antithrombotic proteins to sites of vascular injury (1–4). However, such therapies are impeded by relatively low yields of megakaryocytes from standard ES/iPS cell differentiation protocols. One potential solution is to overexpress transcription factors that expand hematopoietic progenitors, although these factors must be carefully titrated to optimize megakaryocyte yields (5, 6). Based on prior observations of GATA1-mutated patients, mice, and cell lines, we assessed whether reversible suppression of this essential hematopoietic transcription factor can enhance the production of functional megakaryocytes by ES cells. Mice and humans with GATA1 mutations accumulate hematopoietic cells resembling immature megakaryocytes and/or megakaryocyte-erythroid progenitors (MEPs) (7–9). Previously, we demonstrated that in vitro hematopoietic differentiation of murine Gata1– ES cells generates self-renewing MEP-like cells, termed G1ME (for Gata1-deficient MEP) (10). Retroviral transduction of Gata1 cDNA into G1ME cells triggered the formation of erythroblasts and megakaryocytes. However, these lineage-committed cells failed to mature fully in vitro, consistent with findings that their optimal development requires precise timing and levels of GATA1 that cannot be achieved by standard retroviral transfer (11–15). Thus, we generated ES cells harboring a doxycycline-inducible (dox-inducible) Gata1 shRNA transgene. In vitro hematopoietic differentiation with dox resulted in greater than 10^{14}-fold expansion of MEP-like cells. Dox removal restored endogenous GATA1 expression, thereby triggering differentiation into erythroblasts and mature megakaryocytes capable of generating functional platelets in vivo. Our findings illustrate how clinical studies of rare genetic blood disorders inspired an approach to enhancing the production of megakaryocytes from pluripotent stem cells.

Results and Discussion

We introduced 3 tandem Gata1 shRNAs or a scrambled control shRNA downstream of a dox-regulated promoter embedded within the Hprt gene of murine ES cells (ref. 16 and Supplemental Figure 1, A and B; supplemental material available online with this

Related Commentary: p. 2261
The production of MEP-like cells from ES cells. These findings are similar to what we observed for Gata1– ES cells (10) and, therefore, not likely caused by shRNA off-target effects.

This study focuses on the production of functional megakaryocytes and platelets from amplified G1ME2 cells. Approximately 5 to 6 days after dox withdrawal with TPO and SCF present, most G1ME2 cells differentiated into megakaryocytes, as evidenced by morphology (Figure 1E), acetylcholinesterase expression (ref. 19 and Figure 1F), and proplatelet formation (Figure 1, G and H).

We compared megakaryocytes generated from murine fetal liver (FL) hematopoietic progenitors (20), G1ME2 cells, and G1ME cells (ref. 10 and Figure 2). The kinetics and levels of Gata1 mRNA and protein expression differed greatly between G1ME cells after retroviral transfer of Gata1 cDNA versus G1ME2 cells after dox withdrawal (Figure 2, A and B), with the latter approximating more closely FL-derived megakaryocytes. Gata2 mRNA declined in all samples, consistent with prior studies on megakaryocytic maturation (21). This decline was more precipitous in G1ME cells, perhaps due to relative overexpression of viral vector–encoded GATA1, which represses Gata2 transcription (22). The megakaryocytic genes Vurf, Pf4, Gpi1a, Selp, and Ppbp were expressed at similar levels in FL- and G1ME2-derived megakaryocytes, but to a lesser extent in megakaryocytes generated from G1ME cells (Figure 2, A and B). Compared with G1ME cells, G1ME2-derived megakaryocytes article; doi:10.1172/JCI77670DS1). Recombinant ES cells were differentiated into embryoid bodies, disaggregated with trypsin, and seeded into liquid culture with stem cell factor (SCF), thrombopoietin (TPO), and dox (Supplemental Figure 1C). Semiquantitative real-time PCR (RT-PCR) showed reduced Gata1 mRNA in cells expressing the corresponding shRNAs (Supplemental Figure 1D). Hematopoiesis from control ES cells ceased after about 2 weeks, while Gata1-suppressed ES cells produced a homogeneous nonadherent cell population that expanded logarithmically for more than 40 days (Figure 1A). The expanded cell population that emerged from Gata1-deficient ES cells, termed G1ME2, exhibited immature morphology (Figure 1E) and expressed CD41 and KIT (Figure 1B), similarly to embryonic/fetal hematopoietic progenitors (17, 18). Dox withdrawal from G1ME2 cells cultured in erythropoietin (EPO) and TPO derepressed Gata1 mRNA (Figure 1C) and protein (Figure 1D), with accompanying proliferation arrest (not shown) and erythro-megakaryocytic differentiation (Supplemental Figure 2, A–F). In methylcellulose with multilineage cytokines, individual G1ME2 cells gave rise to colonies containing erythroblasts and/or megakaryocytes, but not granulocytes or macrophages, indicating bilineage potential resembling MEPs (Supplemental Figure 2, D–F). After dox withdrawal with EPO or TPO, G1ME2 cells formed mainly erythroblasts or megakaryocytes, respectively (Supplemental Figure 2, A–C). Thus, shRNA suppression of Gata1 enhances the production of MEP-like cells from ES cells. These findings are similar to what we observed for Gata1 ES cells (10) and, therefore, not likely caused by shRNA off-target effects.

This study focuses on the production of functional megakaryocytes and platelets from amplified G1ME2 cells. Approximately 5 to 6 days after dox withdrawal with TPO and SCF present, most G1ME2 cells differentiated into megakaryocytes, as evidenced by morphology (Figure 1E), acetylcholinesterase expression (ref. 19 and Figure 1F), and proplatelet formation (Figure 1, G and H). We compared megakaryocytes generated from murine fetal liver (FL) hematopoietic progenitors (20), G1ME2 cells, and G1ME cells (ref. 10 and Figure 2). The kinetics and levels of Gata1 mRNA and protein expression differed greatly between G1ME cells after retroviral transfer of Gata1 cDNA versus G1ME2 cells after dox withdrawal (Figure 2, A and B), with the latter approximating more closely FL-derived megakaryocytes. Gata2 mRNA declined in all samples, consistent with prior studies on megakaryocytic maturation (21). This decline was more precipitous in G1ME cells, perhaps due to relative overexpression of viral vector–encoded GATA1, which represses Gata2 transcription (22). The megakaryocytic genes Vurf, Pf4, Gpi1a, Selp, and Ppbp were expressed at similar levels in FL- and G1ME2-derived megakaryocytes, but to a lesser extent in megakaryocytes generated from G1ME cells (Figure 2, A and B). Compared with G1ME cells, G1ME2-derived megakaryocytes...
exhibited stronger, more sustained expression of the maturation marker CD42b (GP1bα) (Figure 2C) and increased DNA content, reflecting endoreduplication of normal megakaryopoiesis (Figure 2D). Transcriptome studies demonstrated that G1ME2 cells exhibited a robust megakaryocyte maturation program that is more similar to FL megakaryocytes than those generated from G1ME cells (Supplemental Figure 3). Thus, restoration of Gata1 expression, either by retroviral transduction of G1ME cells or reversal of RNA
The Journal of Clinical Investigation

Brief report

The cremaster muscle artery injury model (20). (A) Calcein AM loaded, BSA-purified G1ME2 cell–derived megakaryocytes (0.5 to 1 × 10^6 cells) were infused into C57BL/6 mice. Thereafter, a cremaster arteriole was laser pulsed and monitored by video microscopy. Incorporation of G1ME2-derived platelets (green) into a thrombus after injury is shown. Representative of 10 experiments. 4 to 7 separate laser injuries were performed for each experiment. (B-D) 0.5 to 1 × 10^6 megakaryocytes (B and C) or 1 × 10^7 washed mouse platelets (D) were incubated with or without platelet inhibitor drugs and tested for adherence to fresh laser-induced thrombi (n = 3–6 experiments). PGE1, 1 μM; ASA, 1 mM. (E) Alexa Fluor 647-conjugated anti-P-selectin antibody was infused after G1ME2-derived megakaryocytes and before laser injury. Left panels: confocal fluorescent video microscopy of thrombi. Endogenous calcein–, P-selectin+ platelets are blue. The arrows show 2 G1ME2-derived platelets visualized over time by single particle tracking. These platelets were green initially (calcein+ P-selectin–), then became cyan (green + blue) following P-selectin induction. Representative images are shown from 3 independent experiments. Scale bar: 10 μm. Right: calcein (green lines) and P-selectin expression (blue lines) versus time after laser injury in platelets 1 and 2 from the left panels.

G1ME2-derived megakaryocytes produce functional platelets in vivo. The cremaster muscle artery injury model (20). (A) Calcein AM loaded, BSA-purified G1ME2 cell–derived megakaryocytes (0.5 to 1 × 10^6 cells) were infused into C57BL/6 mice. Thereafter, a cremaster arteriole was laser pulsed and monitored by video microscopy. Incorporation of G1ME2-derived platelets (green) into a thrombus after injury is shown. Representative of 10 experiments. 4 to 7 separate laser injuries were performed for each experiment. (B-D) 0.5 to 1 × 10^6 megakaryocytes (B and C) or 1 × 10^7 washed mouse platelets (D) were incubated with or without platelet inhibitor drugs and tested for adherence to fresh laser-induced thrombi (n = 3–6 experiments). PGE1, 1 μM; ASA, 1 mM. (E) Alexa Fluor 647-conjugated anti-P-selectin antibody was infused after G1ME2-derived megakaryocytes and before laser injury. Left panels: confocal fluorescent video microscopy of thrombi. Endogenous calcein–, P-selectin+ platelets are blue. The arrows show 2 G1ME2-derived platelets visualized over time by single particle tracking. These platelets were green initially (calcein+ P-selectin–), then became cyan (green + blue) following P-selectin induction. Representative images are shown from 3 independent experiments. Scale bar: 10 μm. Right: calcein (green lines) and P-selectin expression (blue lines) versus time after laser injury in platelets 1 and 2 from the left panels.

Figure 3. G1ME2-derived megakaryocytes produce functional platelets in vivo. The cremaster muscle artery injury model (20). (A) Calcein AM loaded, BSA-purified G1ME2 cell–derived megakaryocytes (0.5 to 1 × 10^6 cells) were infused into C57BL/6 mice. Thereafter, a cremaster arteriole was laser pulsed and monitored by video microscopy. Incorporation of G1ME2-derived platelets (green) into a thrombus after injury is shown. Representative of 10 experiments. 4 to 7 separate laser injuries were performed for each experiment. (B-D) 0.5 to 1 × 10^6 megakaryocytes (B and C) or 1 × 10^7 washed mouse platelets (D) were incubated with or without platelet inhibitor drugs and tested for adherence to fresh laser-induced thrombi (n = 3–6 experiments). PGE1, 1 μM; ASA, 1 mM. (E) Alexa Fluor 647-conjugated anti-P-selectin antibody was infused after G1ME2-derived megakaryocytes and before laser injury. Left panels: confocal fluorescent video microscopy of thrombi. Endogenous calcein–, P-selectin+ platelets are blue. The arrows show 2 G1ME2-derived platelets visualized over time by single particle tracking. These platelets were green initially (calcein+ P-selectin–), then became cyan (green + blue) following P-selectin induction. Representative images are shown from 3 independent experiments. Scale bar: 10 μm. Right: calcein (green lines) and P-selectin expression (blue lines) versus time after laser injury in platelets 1 and 2 from the left panels.

Circulating megakaryocytes lodge in pulmonary vascular beds where they produce functional platelets (20, 23, 24). We harvested mature megakaryocytes from G1ME2 cells, G1ME cells, and FL progenitor cultures at optimal maturation time points, as assessed by CD42b expression and ploidy (Figure 2, C and D, and not shown), and injected approximately equal numbers into mice engineered to express the human platelet integrin subunit αIIb (CD41) in place of the endogenous protein (25). Circulating donor megakaryocyte–derived platelets were distinguished from endogenous ones using species-specific anti-CD41 antibodies. G1ME2-derived megakaryocytes gave rise to circulating (mouse) CD41+ platelets similar in size to native mouse platelets (Figure 2, E and F). No circulating platelets were detected from G1ME-derived (Figure 3A and Supplemental Video 1). Platelets from G1ME2 megakaryocytes, FL megakaryocytes, and normal mouse blood incorporated into thrombi with similar kinetics (Figure 3, B–D). Deposition of G1ME2 platelets or control platelets into thrombi was reduced after preincubation with the activation inhibitors prostaglandin E1 (PGE1) and aspirin (ASA) (Figure 3, B and D). Endogenous platelets within thrombi expressed the activation marker P-selectin (Figure 3E and Supplemental Video 2). G1ME2-derived platelets expressed surface P-selectin about 1 minute after lodging in clots, similar to normal platelets (26). Thus, G1ME2-derived platelets home to sites of vascular injury, where they subsequently become activated.

G1ME2-derived megakaryocytes gave rise to approximately 40 circulating platelets/cell with a half-life of 5 to 6 hours, while FL-derived megakaryocytes generated approximately 50 to 100 platelets/cell with a half-life of 20 to 30 hours (Figure 2, G and H, Supplemental Table 1, and ref. 20). Endogenous bone marrow interference in G1ME2 cells, induced megakaryopoiesis. However, derepressing endogenous Gata1 by silencing of dox-regulated shRNAs in G1ME2 cells produced superior megakaryocyte maturation that should translate to more functional platelets. G1ME2-derived megakaryocytes gave rise to approximately 40 circulating platelets/cell with a half-life of 5 to 6 hours, while FL-derived megakaryocytes generated approximately 50 to 100 platelets/cell with a half-life of 20 to 30 hours (Figure 2, G and H, Supplemental Table 1, and ref. 20). Endogenous bone marrow
megakaryocytes produce an estimated 10^3 to 10^4 platelets/cell (24) with a half-life of about 72 hours (27). The reduced quantity and/or longevity of platelets generated in vitro from ES (or GIME2) cell- and FL-derived megakaryocytes could be due to suboptimal culture conditions that fail to support full maturation. Alternatively, megakaryocytes from ES cells and fetal tissues are biologically distinct from adult megakaryocytes and their platelet progeny may have inherently reduced life spans (28–30). Human ES cell–derived megakaryocytes are believed to approximate those derived from early embryonic yolk sacs (31). Whether this is true for GIME2 cell-derived megakaryocytes requires further investigation.

Although megakaryocytes generated from ES cells produce fewer platelets with a shorter in vivo life span, GIME2 cells can be expanded at least 10^{12}-fold over 40 days (Figure 1A). Assuming yield of approximately 20% mature megakaryocytes that each produces 40 platelets, GIME2 cell could theoretically give rise to $10^3 \times 20\% \times 40 = 8 \times 10^{13}$ platelets. For comparison, there are 3×10^{11} donor-derived platelets. On the other hand, ES cells are amenable to genetic manipulation, which can be used to reduce the immunogenicity of platelet progeny and/or engineer them for targeted drug delivery to thromb. Nakamura et al. showed that ectopic expression of dox-regulated MYC, BMI1, and BCL2I transgenes expands ES cell–derived megakaryocyte precursors that give rise to functional platelets after dox withdrawal (6). These observations likely overlap mechanistically with our approach, as GATA1 represses M yc (37) and M yc levels decrease approximately 3-fold after dox withdrawal in GIME2 cells (not shown). However, shRNA suppression of Gata1 expands M EPs consistently in bulk polyclonal cell populations, obviating potential problems associated with over- or underexpression of lentiviral-transduced immortalizing genes (6). Moreover, induced GATA1 deficiency expands bipotential M EPs that could potentially be used to manufacture either red blood cells or megakaryocytes/platelets for transfusion therapies. Here we provide proof of principle for the latter. Now it is important to investigate whether GATA1 suppression expands M EPs from human ES cells.

Methods

Detailed protocols are described in Supplemental Methods. Transcriptome data were deposited in the NCBI’s Gene Expression Omnibus (GEO GSE66479).

Statistics. The mean and SEM were calculated for all experimental groups and analyzed using 2-tailed Student’s t test.

Study approval. The IACUC of The Children’s Hospital of Philadelphia approved all animal protocols.

Acknowledgments

This work was supported by NIH grants P30DK090969 (to M.J. Weiss and M. Poncz), U01 HL099656 (to M. Poncz, D.J. French, and M.J. Weiss), U01HL100407 (to M. Kyba), and K12HL0806406 (to S.K. Sullivan) and a National Hemophilia Foundation Judith Graham Pool fellowship (to J.Y. Noh). We thank Timothy J. Stalker, Vikram Paralkar, and Elizabeth Traxler for intellectual and technical support.

Address correspondence to: Mitchell J. Weiss, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS #355, Memphis, Tennessee 38105, USA. Phone: 901.595.2051; E-mail: mitch.weiss@stjude.org.
