sFLT1 in preeclampsia: trophoblast defense against a decidual VEGFA barrage?

S. Lee Adamson


Commentary

Preeclampsia, a life-threatening complication of human pregnancy, has a spectrum of clinical signs and is likely caused by an array of pathological mechanisms. However, elevated levels of soluble fms-like tyrosine kinase-1 (sFLT1) in the placenta and in the maternal circulation has emerged as a common finding in women with preeclampsia and likely is a causative factor in this disorder. In this issue of the *JCI*, Fan and colleagues provide experimental evidence from both humans and mice that suggests placental trophoblast cells overexpress sFLT1 in self defense against excessive VEGFA produced by maternal decidual cells. The authors’ work thus implicates the decidual cells of the mother as the culprit responsible for increased placental expression of sFLT1, a VEGFA antagonist that enters the maternal circulation and consequently induces the clinical signs of preeclampsia.

Find the latest version:

https://jci.me/78532/pdf
sFLT1 in preeclampsia: trophoblast defense against a decidual VEGFA barrage?

S. Lee Adamson
Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Department of Obstetrics and Gynaecology, University of Toronto, Mount Sinai Hospital, Joseph and Wolf Lebovic Health Complex, Toronto, Ontario, Canada.

Preeclampsia, a life-threatening complication of human pregnancy, has a spectrum of clinical signs and is likely caused by an array of pathological mechanisms. However, elevated levels of soluble fms-like tyrosine kinase-1 (sFLT1) in the placenta and in the maternal circulation has emerged as a common finding in women with preeclampsia and likely is a causative factor in this disorder. In this issue of the JCI, Fan and colleagues provide experimental evidence from both humans and mice that suggests placental trophoblast cells overexpress sFLT1 in self defense against excessive VEGFA produced by maternal decidual cells. The authors’ work thus implicates the decidual cells of the mother as the culprit responsible for increased placental expression of sFLT1, a VEGFA antagonist that enters the maternal circulation and consequently induces the clinical signs of preeclampsia.

The elusive cause of preeclampsia

Preeclampsia is a life-threatening complication of human pregnancy and a leading cause of maternal and perinatal morbidity and mortality worldwide (1). The disorder typically arises in the third trimester and is characterized by maternal hypertension and/or signs of organ dysfunction, including proteinuria, thrombocytopenia, impaired liver function, pulmonary edema, and/or cerebral or visual symptoms (1). Although a definitive cause for preeclampsia remains elusive, theories abound (2). It is now considered likely that failure to identify consistent biomarkers (3) or genetic linkages (4) is because preeclampsia is not a single disease (5). Instead, similar clinical signs are elicited by multiple pathological mechanisms. This conclusion is supported by the diversity of clinical signs and placental pathologies among individuals diagnosed with preeclampsia (6), by the diversity in abnormally expressed genes in placentas from patients with preeclampsia (7), and by the wide range of interventions that evoke preeclamptic signs in animal models (8).

Nevertheless, in many preeclamptic pregnancies, maternal circulating levels of soluble fms-like tyrosine kinase-1 (sFLT1) are elevated in late gestation, often before the onset of clinical signs, which suggests that sFLT1 promotes preeclampsia (9). Moreover, in animal models, experimental elevation of sFLT1 can evoke preeclampsia-like signs in late gestation (8). Thus, the discovery that sFLT1 promotes preeclampsia was greeted with considerable excitement (10). Placental overexpression of sFLT1, specifically in the fetal-derived trophoblast cells, was implicated as the underlying cause of preeclampsia (11). The next burning question became, what causes fetal-derived trophoblast cells to overexpress placental sFLT1? In this issue, Fan and colleagues turn the tables and provide a body of work that suggests fetal-derived trophoblast cells overexpress sFLT1 in self defense against excessive VEGFA produced by maternal decidual cells (12). Thus, the authors’ study blames the victim, implicating the decidual cells of the mother as the culprit responsible for disease.

Decidual VEGFA overexpression as a cause of preeclampsia

Fan et al. examined VEGFA and sFLT1 expression in decidual cells near the placental interface (i.e., the basal plate) in a cohort of women with preeclampsia. The authors found that VEGFA mRNA expression was augmented specifically in maternal decidual cells, whereas sFLT1 mRNA was highly overexpressed in fetal extravillous trophoblast cells that had invaded the decidua — a normal event in placentaion (12). These in situ hybridization findings were supported by quantitative RT-PCR, which revealed markedly elevated expression of VEGFA and sFLT1 mRNA in basal plate tissue samples. Fan and colleagues next used adenovirus-based gene delivery and developed a murine model with augmented decidual VEGFA expression. Enhanced decidual VEGFA caused pregnant mice to develop preeclampsia-associated signs in late gestation, including increased placental sFLT1 protein and mRNA, increased sFLT1 in maternal serum, and maternal hypertension and proteinuria (12). Intriguingly, this etiology appears to define a specific subtype of preeclampsia, given that basal plate biopsies in other cohorts of preeclamptic women have shown no change in VEGFA mRNA (13) or a marked decrease in VEGFA protein and mRNA (14).

In addition to evoking preeclamptic signs in mice, Fan and colleagues found that decidual VEGFA overexpression halved the number of viable fetuses by late gestation, with fetal survivors being markedly growth restricted (12). Fetal losses appeared to occur in midgestation due to hemorrhaging at the maternal-fetal interface, and placental
histology revealed dilation and engorge-
ment of vessels carrying maternal blood
back into the maternal circulation. The
authors’ work highlights the relevance
of their model to preeclampsia; however,
they importantly point out that decidual
VEGFA overexpression may also under-
lie other pathological outcomes — includ-
ing intrauterine growth restriction, early
pregnancy loss, and placental abruption
in human pregnancy, where only one
conceptus is the norm (12).

To determine whether the ill effects
of decidual VEGFA overexpression were
causative roles in preeclampsia (26), and other studies that
found that failed spiral artery remodel-
ing in mutant mice did not cause pre-
eclampsic signs (27). Thus, the current
study adds to accumulating evidence that
impaired spiral artery remodeling and
reduced trophoblast invasion into the
decidua may play associative rather than
causative roles in preeclampsia.

Future directions
In the cohort of human preeclampsic
cases studied by Fan and colleagues,
decidual VEGFA expression in the basal
plate was elevated overall; however, the
authors did not report how often a marked
increase was observed (12). For example,
how many women with preeclampsia had
levels >2 SD above the mean for women
without preeclampsia? Given that prior
reports have not observed an elevation in
basal plate VEGFA (13, 14) and that pla-
cental gene expression pathology in pre-
eclampsia has known heterogeneity (7), it
is highly likely that an increase in decidi-
ual VEGFA explains only a portion of pre-
eclampsic cases. In future studies, it will
be valuable to examine a larger cohort of
women with preeclampsia in order to
determine how common this etiology is
and to determine whether there is a cor-
relation between decidual VEGFA and
decidua may play associative rather than
causative roles in preeclampsia.

Acknowledgments
S.L. Adamson acknowledges personnel
support as the Anne and Max Tanenbaum
Chair in Molecular Medicine at Mount
Sinai Hospital as well as operating grant
support from the Canadian Institutes for
Health Research (grant FRN:93618).
Commentary

Address correspondence to: S. Lee Adamson, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Department of Obstetrics and Gynaecology, University of Toronto, Mount Sinai Hospital, Joseph and Wolf Lebovic Health Complex, 60 Murray St., Box 42, Toronto, Ontario M5T 3L9, Canada. Phone: 416.586.8377; E-mail: adamson@lunenfeld.ca.