Supplemental Figure 1. Mutant and control mice demonstrate equal size injury region at 2 days post-LAD ligation. (A, B) Whole-mount images and histology of control (n=3) and mutant animals (n=4) as indicated, 2 days post-MI (LAD ligation). White dotted line demarcates area of injury near the ligature, and representative Trichrome staining of sections at base (i), mid-ventricle (ii), and apex (iii). (C) Quantification of fibrosis of serial sections; there is no statistical difference between fibrosis in mutant and control (P value was calculated using a two-tailed Student’s t-test; Data represent mean ± SEM) (D, E) Whole-mount images and histology of control (n=3) and mutant (n=3) 14 days after sham surgery. No excessive fibrosis is noted in the chest wall cavity or heart in the mutant (E). Representative histology images from base, mid-ventricle, and apex are shown in (D, E). (A-E) Tamoxifen administered to both control and mutant 2 days prior to and 2 days post surgery. Scale Bars: 1 mm.
Supplemental Figure 2. Cardiac function in epicardial null mice and control mice are the same at baseline. Transthoracic echocardiography in 3 control (Taz^{flax/flox}; Yap^{flox/flox}) and 3 mutant mice (Wt1^{CreERT2/}; Yap^{flox/flox}; Taz^{flox/flox}) after tamoxifen induction and no surgery at 1 week post-MI shows no significance difference in body weight (A), left ventricular end-diastolic volume (LV EDV) (B), stroke volume (C), and cardiac output (D). Data represent mean ± SD. P values were calculated using a two-tailed Student’s t-test. Significance: N.S. = not significant.
Supplemental Figure 3. Epicardial Yap/Taz null mice demonstrate alteration of multiple immune targets at 14 days post-MI. (A) Bar graph of quantitative RT-PCR immune arrays from microdissected free LV walls of control (Yap^{flox/flox}; Taz^{flox/flox}, n=3) and mutant (Wt1^{CreERT2/+}; Yap^{flox/flox}; Taz^{flox/flox}, n=3) animals at 14 days post-MI. Red targets represent significantly downregulated genes in mutants compared with controls (n=3 in both groups). (B) Bar graph showing specific fold changes for the 10 significantly modulated genes in the qRT-PCR immune arrays (n=3 in both groups). Statistics were completed using a Student’s t-test. Data represent mean ± SD. Significance: *p < 0.05.
Supplemental Figure 4. IFN-γ is produced by epicardial activated cells after MI injury. Cross sections from Wt1^CreERT2^+/Yap^flox/flox^; Taz^flox/flox^; R26^Tomato/+^ animals following RNAscope in situ hybridization for IFN-γ 3 days after MI injury or sham surgery, as indicated (2 examples each). Black arrows denote IFN-γ positive cells in the epicardium, and white arrows denote corresponding tomato positive cells in the epicardium. Adjacent sections stained for Hoechst, Tomato or merged (Hoechst/Tomato) are shown as indicated. Scale bar: 25 μm.
Supplemental Figure 5. Epicardial Yap/Taz null mice exhibit a hyperinflammatory response. (A) Cross sections from Yap$^{flox/flox}$, Taz$^{flox/flox}$ (control) and Wt1CreERT2/+; Yap$^{flox/flox}$, Taz$^{flox/flox}$ (mutant) animals 14 days post-MI immunostained for CD4 and/or Hoechst demonstrating a similar number of CD4+ T-cells in both groups. (B) Cross sections from Yap$^{flox/flox}$, Taz$^{flox/flox}$ (control) and Wt1CreERT2/+; Yap$^{flox/flox}$, Taz$^{flox/flox}$ (mutant) animals 14 days post-MI immunostained for F4/80 and/or showing increased F4/80+ macrophages in the mutant mice compared to controls. Scale bars: 50 µm (A, B; top panels for each genotype), 25 µm (A, B; bottom panels for each genotype).
Supplemental Figure 6. Immune cell populations of the spleen and mediastinal lymph node are unchanged following epicardial Yap/Taz deletion. (A-B) Flow cytometry analyses of mediastinal lymph nodes and spleen 3 (A) and 14 (B) days post-MI from mutant (Wt1CreERT2/+; Yapflx/flx; Tazflx/flx) and control (Yapflx/flx; Tazflx/flx) mice (n=3 in all analyses). Statistics were completed using a Student’s t-test, Data represent mean ± SD. Significance: # p < 0.10, and *p < 0.05.
Supplemental Table 1. Quantitative echocardiographic measurements demonstrate significantly reduced LV end-diastolic volume and chamber length in mutant mice after MI. Comprehensive echocardiographic measurements in Taz^{flox/flox}; Yap^{flox/flox} (control, n=7) and Wt1^{CreERT2/} ⁺; Yap^{flox/flox}, Taz^{flox/flox} (mutant, n=6) animals one week post-MI show significantly reduced LV end-diastolic volume, LV diastolic endocardial length and LV systolic endocardial length in epicardial Yap/Taz null mice. Means and standard deviations are shown for each corresponding metric. P values were calculated using a two-tailed Student’s t-test.

<table>
<thead>
<tr>
<th></th>
<th>CONTROLS (N=7)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LVAEpid</td>
<td>LVAENDd</td>
<td>LVAENDs</td>
<td>LVLd</td>
<td>LVLs</td>
<td>EDV</td>
<td>ESV</td>
<td>SV</td>
<td>CO</td>
<td>HR</td>
<td>LVMass</td>
<td>LVMass/BW</td>
<td>IVSd</td>
<td>IVSs</td>
<td>LVPWd</td>
<td>LVPWs</td>
<td>LVIDd</td>
</tr>
<tr>
<td></td>
<td>mm<sup>2</sup></td>
<td>mm<sup>2</sup></td>
<td>mm<sup>2</sup></td>
<td>mm</td>
<td>mm</td>
<td>ul</td>
<td>ul</td>
<td>ul</td>
<td>ml/min</td>
<td>mg</td>
<td>mg/g</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
</tr>
<tr>
<td>Mean</td>
<td>29.037</td>
<td>14.970</td>
<td>8.326</td>
<td>7.707</td>
<td>103.533</td>
<td>57.264</td>
<td>46.279</td>
<td>21.863</td>
<td>472</td>
<td>126.005</td>
<td>4.134</td>
<td>0.905</td>
<td>1.239</td>
<td>0.752</td>
<td>1.017</td>
<td>4.116</td>
<td>3.073</td>
</tr>
<tr>
<td>Std deviation</td>
<td>4.408</td>
<td>1.160</td>
<td>1.678</td>
<td>0.781</td>
<td>0.890</td>
<td>15.679</td>
<td>3.882</td>
<td>2.359</td>
<td>25</td>
<td>15.208</td>
<td>1.064</td>
<td>0.229</td>
<td>0.302</td>
<td>0.149</td>
<td>0.195</td>
<td>0.302</td>
<td>0.386</td>
</tr>
<tr>
<td>MUTANTS (N=6)</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>25.381</td>
<td>13.960</td>
<td>8.073</td>
<td>7.297</td>
<td>85.262</td>
<td>46.714</td>
<td>38.548</td>
<td>15.889</td>
<td>409</td>
<td>90.074</td>
<td>3.849</td>
<td>0.829</td>
<td>1.156</td>
<td>0.748</td>
<td>1.057</td>
<td>3.972</td>
<td>2.874</td>
</tr>
<tr>
<td>Std deviation</td>
<td>6.569</td>
<td>2.795</td>
<td>2.910</td>
<td>0.554</td>
<td>0.694</td>
<td>19.930</td>
<td>7.710</td>
<td>4.787</td>
<td>86</td>
<td>20.576</td>
<td>0.961</td>
<td>0.192</td>
<td>0.198</td>
<td>0.217</td>
<td>0.196</td>
<td>0.260</td>
<td>0.421</td>
</tr>
<tr>
<td>P value</td>
<td>0.257</td>
<td>0.399</td>
<td>0.569</td>
<td>0.027</td>
<td>0.066</td>
<td>0.091</td>
<td>0.311</td>
<td>0.039</td>
<td>0.014</td>
<td>0.091</td>
<td>0.146</td>
<td>0.629</td>
<td>0.535</td>
<td>0.578</td>
<td>0.968</td>
<td>0.723</td>
<td>0.381</td>
</tr>
</tbody>
</table>

LEGEND
- **BW** grams: Body weight
- **HR** bpm: Heart rate
- **LVAEpid** mm²: LV epicardial area at end diastole
- **LVAENDd** mm²: LV endocardial area at end diastole
- **LVAENDs** mm²: LV endocardial area at end systole
- **LVLd** mm: LV length from plane of the mitral valve to the apical endocardial surface during diastole
- **LVLs** mm: LV length from plane of the mitral valve to the apical endocardial surface during systole
- **EDV** ul: End diastolic LV volume
- **ESV** ul: End systolic LV volume
- **SV** ul: Stroke volume
- **CO** ml/min: Cardiac output
- **IVSd** mm: Thickness of the Interventricular septum in diastole
- **IVSs** mm: Thickness of the Interventricular septum in systole
- **LVPWd** mm: LV posterior wall thickness, diastole
- **LVPWs** mm: LV posterior wall thickness, systole
- **LVIDd** mm: LV dimension in diastole
- **LVIDs** mm: LV dimension in systole