Osteoporosis is a metabolic bone disorder associated with compromised bone strength and an increased risk of fracture. Inhibition of the differentiation of bone-resorbing osteoclasts is an effective strategy for the treatment of osteoporosis. Prior work by our laboratory and others has shown that MYC promotes osteoclastogenesis in vitro, but the underlying mechanisms are not well understood. In addition, the in vivo importance of osteoclast-expressed MYC in physiological and pathological bone loss is not known. Here, we have demonstrated that deletion of Myc in osteoclasts increases bone mass and protects mice from ovariectomy-induced (OVX-induced) osteoporosis. Transcriptomic analysis revealed that MYC drives metabolic reprogramming during osteoclast differentiation and functions as a metabolic switch to an oxidative state. We identified a role for MYC action in the transcriptional induction of estrogen receptor–related receptor α (ERRα), a nuclear receptor that cooperates with the transcription factor nuclear factor of activated T cells, c1 (NFATc1) to drive osteoclastogenesis. Accordingly, pharmacological inhibition of ERRα attenuated OVX-induced bone loss in mice. Our findings highlight a MYC/ERRα pathway that contributes to physiological and pathological bone loss by integrating the MYC/ERRα axis to drive metabolic reprogramming during osteoclast differentiation.
Osteoporosis is a metabolic bone disorder associated with compromised bone strength and an increased risk of fracture. Inhibition of the differentiation of bone-resorbing osteoclasts is an effective strategy for the treatment of osteoporosis. Prior work by our laboratory and others has shown that MYC promotes osteoclastogenesis in vitro, but the underlying mechanisms are not well understood. In addition, the in vivo importance of osteoclast-expressed MYC in physiological and pathological bone loss is not known. Here, we have demonstrated that deletion of Myc in osteoclasts increases bone mass and protects mice from ovariectomy-induced (OVX-induced) osteoporosis. Transcriptomic analysis revealed that MYC drives metabolic reprogramming during osteoclast differentiation and functions as a metabolic switch to an oxidative state. We identified a role for MYC action in the transcriptional induction of estrogen receptor-related receptor α (ERRα), a nuclear receptor that cooperates with the transcription factor nuclear factor of activated T cells, c1 (NFATc1) to drive osteoclastogenesis. Accordingly, pharmacological inhibition of ERRα attenuated OVX-induced bone loss in mice. Our findings highlight a MYC/ERRα pathway that contributes to physiological and pathological bone loss by integrating the MYC/ERRα axis to drive metabolic reprogramming during osteoclast differentiation.

Introduction
MYC (also known as c-MYC) is a broadly acting transcription factor that regulates the differentiation and proliferation program of cells by multiple mechanisms including a transcriptional amplification of target genes (1–3). MYC deficiency in mice is embryonically lethal (4), and aberrant overexpression of MYC is found in human cancers (5). MYC has been implicated in vitro osteoclastogenesis (6, 7), and we recently identified MYC as an important transcriptional factor of the RANKL-induced transcriptional program by directly regulating nuclear factor of activated T cells, c1 (NFATc1) in osteoclasts (8). However, the molecular and cellular mechanism by which MYC regulates osteoclastogenesis and the functional role of myeloid cell-specific MYC during physiological and pathological bone remodeling in vivo are not completely elucidated.

Osteoclasts are multinuclear giant cells responsible for bone resorption and are derived from the myeloid lineage cells in response to RANKL (9, 10). RANKL activates canonical signaling pathways including NF-κB and MAPK as well as immunoreceptor tyrosine-based activation motif (ITAM) immunoreceptor signaling pathways, synergistically inducing the expression of NFATc1, a master regulator of osteoclastogenesis (11). Although NFATc1 is known as an essential factor regulating osteoclast-specific gene expression programs (11, 12), NFATc1 deficiency affects only a subset of RANKL-regulated transcriptional programs (13), implicating the importance of other transcription factors in gene regulation during osteoclast differentiation. Recently, association of the comprehensive transcriptional factor network with molecular pathways in osteoclasts has gained much interest, and identification of new transcriptional pathways controlling osteoclastogenesis will offer promising therapeutic targets for the treatment of pathological bone disorders such as osteoporosis.

The importance of metabolic reprogramming in osteoclast differentiation is increasingly appreciated. Metabolic adaptation to meet increased energy demand is required to undergo osteoclast differentiation (7, 14–17). Recent studies have shown that several factors such as peroxisome proliferator-activated receptor γ coactivator 1β (PGC1β), PPARγ, and estrogen receptor-related receptor α (ERRα) govern key metabolic processes by transcriptionally regulating distinct metabolic genes during osteoclast differentiation as part of bone remodeling (18–21). However, whether there exists a key upstream regulator that controls these factors during RANKL-induced metabolic reprogramming is not clear.

In this study, we demonstrate that MYC and MYC-mediated regulation of oxidative respiration provide potential links between RANK signaling and metabolic reprogramming during...
osteoclastogenesis and identify a MYC/ERRα pathway that drives metabolic reprogramming during osteoclast differentiation as an important regulator of physiological and pathological bone loss. Moreover, our study highlights the possibility that pharmacological inhibition of ERRα may offer translational potential for the treatment of human bone disorders such as osteoporosis.

Results

Myeloid-specific deletion of MYC causes increased bone mass and decreased osteoclastogenesis. MYC was transiently expressed in the early stage of osteoclastogenesis (within 24 hours after RANKL stimulation) in both human and mouse osteoclast precursors (OCPs) (Supplemental Figure 1; supplemental material available online with this article; https://doi.org/10.1172/JCI89935DS1). To determine the role of this transient MYC expression in OCPs in physiological bone remodeling, we first investigated the bone phenotype of Mjc conditional knockout mice generated by crossing MycΔm mice with LysM-Cre mice (22) to specifically delete Myc in myeloid/osteoclast lineage cells (hereafter referred to as MYCΔM mice). Microcomputed tomography (μCT) analysis of 12-week-old male and female MYCΔM mice clearly indicated increased bone mass compared with that seen in their littermate controls (LysM-Cre, hereafter referred to as MYCWT mice) (Figure 1, A and B, and Supplemental Figure 2, A and B). The body weight was not affected by Myc deletion in either male or female mice (Supplemental Figure 2C). Bone histomorphometric analysis of femurs from 12-week-old male MYCΔM and MYCWT mice (n ≥5). (C) Representative images showing TRAP-positive, multinucleated osteoclasts (red). Scale bars: 200 μm. (D) Plots show the number of osteoclasts per bone surface (N.Oc/BS), osteoclast surface area per bone surface (Oc.S/BS), eroded surface per bone surface (ES/BS), and osteoblast surface area per bone surface (Ob.S/BS). All data are shown as the mean ± SEM. *P < 0.05, by 2-tailed, unpaired t test in B and D.

Figure 1. Myeloid-specific MYC-deficient mice have high bone mass. (A and B) μCT analysis of femurs from 12-week-old male MYCΔM and littermate control MYCWT mice (n = 11 per group). (A) Representative images show trabecular architecture by μCT reconstruction in the distal femurs. Scale bars: 1 mm. (B) μCT measurements for the indicated parameters in distal femurs. Bone volume/tissue volume ratio (BV/TV), trabecular numbers (Tb.N), trabecular thickness (Tb.Th), and trabecular space (Tb.Sp) were determined by μCT analysis. (C and D) Histomorphometric analysis of femurs from 12-week-old male MYCΔM and MYCWT mice (n ≥5). (C) Representative images showing TRAP-positive, multinucleated osteoclasts (red). Scale bars: 200 μm. (D) Plots show the number of osteoclasts per bone surface (N.Oc/BS), osteoclast surface area per bone surface (Oc.S/BS), eroded surface per bone surface (ES/BS), and osteoblast surface area per bone surface (Ob.S/BS). All data are shown as the mean ± SEM. *P < 0.05, by 2-tailed, unpaired t test in B and D.

Next, we isolated OCPs from MYCΔM bone marrow and evaluated in vitro osteoclast differentiation in the presence of macrophage-CSF (M-CSF) and RANKL. MYC was efficiently diminished in MYC-deficient OCPs (Supplemental Figure 3). MYC deficiency resulted in essentially a complete failure of OCPs to differentiate into osteoclasts.
2C). Ectopic expression of MYC rescued the defect in osteoclastogenesis in MYC-deficient OCPs (Figure 2D), thus confirming that deletion of Myc is responsible for the loss of osteoclastogenesis. We initially reasoned that the complete loss of osteoclastogenesis could be explained by decreased bone marrow osteoclast progenitor cells in MYCΔM mice or their decreased proliferation in vitro.
However, consistent with a previous report showing intact bone marrow and lymphoid compartments in Myc-knockout mice (23), the total number and frequency of the CD11b<int>Ly6Chi osteoclast marrow and lymphoid compartments in

However, consistent with a previous report showing intact bone marrow and lymphoid compartments in Myc-knockout mice (23), the total number and frequency of the CD11b<int>Ly6Chi osteoclast marrow and lymphoid compartments in

However, consistent with a previous report showing intact bone marrow and lymphoid compartments in Myc-knockout mice (23), the total number and frequency of the CD11b<int>Ly6Chi osteoclast marrow and lymphoid compartments in

However, consistent with a previous report showing intact bone marrow and lymphoid compartments in Myc-knockout mice (23), the total number and frequency of the CD11b<int>Ly6Chi osteoclast marrow and lymphoid compartments in

Figure 3. MYC deficiency impairs mitochondrial respiration during osteoclast differentiation. Control (MYCWT) and MYC-deficient (MYCΔM) OCPs were stimulated with RANKL (50 ng/ml) for 2 days. (A) Scatterplot of global gene expression profiles of MYCWT and MYCΔM OCPs derived from RNA-seq analysis. (B) GSEA of RANKL-stimulated MYCWT OCPs, with genes ranked on the basis of expression in MYCWT OCPs relative to that in MYCΔM OCPs, showing the distribution of genes in the oxidative phosphorylation gene set against the ranked list of the genes from the RNA-seq analysis. (C) Heatmap of RNA-seq FPKM values for genes involved in oxidative phosphorylation in MYCWT and MYCΔM OCPs following RANKL stimulation for 2 days. RNA-seq data from 2 biological replicates were used. D0, day 0 without RANKL stimulation; D2, day 2 following RANKL stimulation. (D and E) Mitochondrial function was assessed by real-time OCR measurement after sequential treatment of compounds modulating mitochondrial function. The OCR was normalized to the relative unit of DNA. (D) Representative time course data. (E) Assessment of mitochondrial activity as described in Supplemental Figure 9 (n = 3). (F) Measurements of mitochondrial mass using MitoTracker Red with flow cytometry (n = 3). (G) The basal OCR was measured with mock-infected or MYC-transduced MYC-deficient OCPs stimulated with RANKL (50 ng/ml) for 2 days (n = 3). All data are shown as the mean ± SEM. *P < 0.05, by 2-way ANOVA with Tukey’s post-hoc test.

However, consistent with a previous report showing intact bone marrow and lymphoid compartments in Myc-knockout mice (23), the total number and frequency of the CD11b
Ly6Chi osteoclast precursor population (24) residing in the bone marrow were comparable between MYCWT and MYCΔM mice (Supplemental Figure 4, A and B). In addition, MYC deficiency had modest effects on apoptosis, and MYC-deficient OCPs showed decreased proliferation. These results could not explain the striking effects of MYC deficiency on osteoclastogenesis (Supplemental Figure 4, C and D). Furthermore, RANK expression and proximal RANKL signaling were not altered in MYC-deficient OCPs (Supplemental Figure 5). Taken together, these results indicate that RANKL-inducible MYC is crucial for osteoclast differentiation in vitro.

MYC is a crucial regulator of oxidative metabolism during osteoclastogenesis. Consistent with our previous results showing MYC as a direct regulator of NFATc1 (8), expression levels of both NFATc1 mRNA and protein were suppressed in MYC-deficient OCPs (Figure 2, C and E). We first reasoned that restoration of NFATc1 activity would compensate for impaired osteoclastogenesis in MYC-deficient OCPs. To test this notion, we transduced MYC-deficient OCPs with a retrovirus encoding the constitutively active form of NFATc1 (Ca-NFATc1). With RANKL stimulation, the expression of NFATc1 and β3 integrin, a downstream target of NFATc1 (12), in Ca-NFATc1-transduced MYC-deficient OCPs was comparable to that in control OCPs (Supplemental Figure 6), but was not sufficient to rescue the defective osteoclastogenesis seen in MYC-deficient OCPs (Figure 2F), suggesting that MYC regulates alternative pathways that are required to cooperate with NFATc1 to promote osteoclastogenesis.

To find new pathways and mechanisms regulated by MYC during osteoclastogenesis, we performed an unbiased transcriptomic analysis using high-throughput RNA sequencing (RNA-seq) with 2 biological replicates after stimulating cells with RANKL for 2 days (Supplemental Figure 7). A total of 1,068 genes were induced (>1.5 fold) and 1,445 genes were suppressed (>1.5 fold) in MYC-deficient OCPs compared with control OCPs (Figure 3A). We used gene set enrichment analysis (GSEA) (25) to broadly test for enrichment of well-defined gene sets from the comprehensive Molecular Signature Database (MSigDB), version 5.1 (www.broadinstitute.org) and Ingenuity Pathway Analysis (IPA) for MYC-dependent genes, which are downregulated in MYCWT OCPs relative to MYCΔM OCPs on day 2 after RANKL stimulation. Genes associated with metabolic pathways, including oxidative phosphorylation and the TCA cycle, were significantly enriched in MYC-dependent genes (Table 1, Figure 3B, and Supplemental Figure 8).

Accordingly, metabolic genes involved in oxidative phosphorylation, which are highly induced in MYCWT OCPs upon RANKL stimulation, were suppressed in MYCΔM OCPs (Figure 3C).

Recent studies show that a metabolic shift toward oxidative processes during osteoclast differentiation provides metabolites (15–17), although key upstream modulators that induce oxidative metabolic reprogramming in osteoclastogenesis are not yet clarified. To directly test whether MYC mediates the RANKL-induced shift toward mitochondrial respiration, we performed an extracellular flux analysis 2 days after RANKL stimulation (Figure 3, D and E, and Supplemental Figure 9). RANKL stimulation led to a characteristic increase in the basal oxygen consumption rate (OCR) in control OCPs (Figure 3, D and E). Strikingly, the basal OCR and other mitochondrial activities such as ATP production, respiratory capacity (maximal electron transport chain activity), and respiratory reserve (flexibility with increased energy demand) were severely impaired in MYC-deficient OCPs upon RANKL stimulation (Figure 3, D and E). We confirmed that the RANKL-induced increase in mitochondrial mass was comparable between MYC-deficient and control OCPs (Figure 3F), indicating that the impaired mitochondrial respiration in MYC-deficient OCPs was not caused by a defect in the quantity of mitochondria. Moreover, the basal OCR was greatly increased by the ectopic expression of MYC (Figure 3G). Consistent with previous reports (7, 16), perturbation of metabolic pathways such as glutaminolysis, glycolysis, and oxidative phosphorylation using specific inhibitors severely abrogated osteoclast differentiation (Supplemental Figure 10), implicating the significance of metabolic reprogramming in osteoclastogenesis. Collectively, these results indicate that MYC is a crucial regulator of RANKL-activated mitochondrial respiration that supports an increased energy demand during osteoclast differentiation.

MYC regulates ERRα during osteoclast differentiation. MYC expression is kept at low levels in normal cells via accelerated decay mechanisms, and aberrant expression of MYC causes tumorigenesis (5). In osteoclastogenesis, MYC expression is transient (Supplemental Figure 1), and thus we hypothesized that MYC induces downstream transcription factors to directly activate osteoclast-related genes and sustain osteoclast differentiation. To discover these factors, we used GSEA to identify transcription factor–binding motifs that are enriched in the promoters of MYC-dependent genes, which can be regulated directly by MYC, or indirectly via MYC-induced transcription factors. In addition to recovering the MYC-binding motif, which validated the approach, and the NFAT-binding motif, as expected on the basis of our previous work (8), we found highly significant enrichment of binding motifs for Sp1 transcription factor (SPI), estrogen-related receptor (ERR), MYC-associated zinc finger protein (MAZ), and splicing factor 1 (SFI) (Table 2); of these, only estrogen-related receptor α (Esrra, encoding ERRα) was dynamically regulated during osteoclast differentiation (Figure 4A).
ERRα is not an estrogen receptor, but instead is a nuclear receptor implicated in increasing cellular energy metabolism in tissues such as liver and skeletal muscle in response to environmental challenges that require high energy levels (26–28). Although ERRα has been implicated in osteoclastogenesis (26, 27), a role for ERRs in mediating the effects of MYC on cell phenotype and metabolism has not been previously appreciated, and mechanisms by which ERRα promotes osteoclastogenesis are mostly unknown. We directly tested the role of MYC in inducing expression of Esrra, which encodes ERRα. Induction of ERRα by RANKL (Figure 4, B and C, and Supplemental Figure 11, A and B) was abrogated in both mouse and human MYC-deficient OCPs (Figure 4, B and C, and Supplemental Figure 11C). Of note, MYC-deficient human OCPs had impaired osteoclastogenesis (Supplemental Figure 11D). Compromised ERRα expression in MYC-deficient OCPs was restored by the reintroduction of MYC using retroviral transduction (Figure 4D), indicating that the expression of ERRα is dependent on MYC. In contrast, the expression of PGC1β, a well-known ERRα coactivator, was not altered by the overexpression of MYC (Figure 4D), and MYC deficiency marginally decreased PGC1β expression (Figure 4C). RANKL-induced expression of ERRα target genes was strongly attenuated in MYC-deficient OCPs (Supplemental Figure 12A). ChIP assays showed that RANKL induced the recruitment of MYC to the Esrra promoter (Supplemental Figure 12B) and that Esrra promoter activity was dependent on MYC (Supplemental Figure 12C). Taken together, these results show that MYC directly regulates ERRα in osteoclasts.

The MYC/ERRα axis regulates mitochondrial respiration in osteoclastogenesis. Consistent with previous reports using genetic approaches (19, 21), ERRα deficiency and treatment with XCT790 (29), an ERRα inhibitor, suppressed RANKL-induced osteoclast differentiation (Supplemental Figure 13 and Supplemental Figure 14A). Importantly, forced MYC expression, which restored osteoclast differentiation in MYC-deficient OCPs (Figure 2D and Figure 5A, left panels), was not able to restore osteoclast differentiation when ERRα was inhibited by XCT790 (Figure 5A). Taken together, these results identify a link between MYC and ERRα in osteoclasts and establish that ERRα is required for the effects of MYC on osteoclastogenesis.

ERRα transcriptionally regulates the expression of genes encoding energy metabolism regulators (28, 30, 31). To test whether ERRα could functionally phenocopy the role of MYC in mitochondrial respiration in osteoclasts, we measured mitochondrial respiration following RANKL stimulation using ERRα-deficient OCPs isolated from ERRα-null mice. Indeed, ERRα-deficient OCPs had a diminished RANKL-induced basal OCR and other mitochondrial activities (Figure 5, B and C). Consistently, expression of RANKL-inducible genes involving oxidative phosphorylation was significantly abrogated in ERRα-deficient or XCT790-treated OCPs (Figure 5D). These results strongly support a role for a novel MYC/ERRα pathway in RANKL-activated mitochondrial respiration.

We next investigated whether overexpression of ERRα could restore impaired osteoclastogenesis in MYC-deficient OCPs. MYC-deficient OCPs were transduced with a retrovirus encoding ERRα-turboGFP (ERRα-tGFP), and the expression of ERRα-tGFP was analyzed by immunoblotting (Supplemental Figure 15B). Ectopic expression of ERRα had a minimal effect on osteoclastogenesis in MYC-deficient OCPs (Supplemental Figure 15), which was similar to the inability of NFATc1 alone to rescue osteoclastogenesis in MYC-deficient OCPs (Figure 2F). Although ERRα-deficient osteoclasts completely failed to resorb bone (Supplemental Figure 14B), RANKL-induced expression of NFATc1 and β3 integrin in ERRα-deficient osteoclasts was comparable to that in WT osteoclasts (Supplemental Figure 14C), supporting the notion that ERRα is not necessary for NFATc1 expression. Therefore, we tested whether both NFATc1 and ERRα are required for MYC-mediated osteoclastogenesis. Indeed, coexpression of Ca-NFATc1 and ERRα was able to partly rescue the impaired osteoclastogenesis in MYC-deficient OCPs (Figure 5E and Supplemental Figure 16). Collectively, our results suggest that ERRα and NFATc1 regulate distinct aspects of osteoclast differentiation and need to cooperate for effective osteoclastogenesis.

Targeting of the MYC/ERRα pathway protects mice against pathological bone loss. To test the importance of the MYC/ERRα pathway in pathological bone resorption and the efficacy of therapeutic targeting of this pathway to prevent bone loss for translational implications, we used the ovariectomy (OVX) model of estrogen

Table 1. Gene ontology analysis of MYCWT and MYCΔ MOCPs derived from RNA-seq analysis

<table>
<thead>
<tr>
<th>Gene set</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>KEGG, Ribosome</td>
<td>9.73 × 10⁻¹¹</td>
</tr>
<tr>
<td>KEGG, Oxidative phosphorylation</td>
<td>1.54 × 10⁻⁴⁵</td>
</tr>
<tr>
<td>KEGG, Parkinson’s disease</td>
<td>3.21 × 10⁻¹⁶</td>
</tr>
<tr>
<td>KEGG, Alzheimer’s disease</td>
<td>2.28 × 10⁻¹²</td>
</tr>
<tr>
<td>KEGG, Citrate cycle TCA cycle</td>
<td>4.52 × 10⁻¹⁰</td>
</tr>
<tr>
<td>KEGG, Kyoto Encyclopedia of Genes and Genomes.</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Motif analysis with GSEA using MYC-dependent genes on day 2 after RANKL stimulation

<table>
<thead>
<tr>
<th>Transcription factor</th>
<th>Binding motif</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP1</td>
<td>GCCGCCG</td>
<td>3.71 × 10⁻¹⁴</td>
</tr>
<tr>
<td>ERR</td>
<td>TGACCTY</td>
<td>7.9 × 10⁻¹⁷</td>
</tr>
<tr>
<td>MA2</td>
<td>GGGAGGRR</td>
<td>3.54 × 10⁻¹⁰</td>
</tr>
<tr>
<td>SFI</td>
<td>TGACCTG</td>
<td>1.19 × 10⁻¹⁸</td>
</tr>
<tr>
<td>NFAT</td>
<td>TGGAAA</td>
<td>1.28 × 10⁻¹⁶</td>
</tr>
<tr>
<td>MYC</td>
<td>CACGTC</td>
<td>6.19 × 10⁻¹⁸</td>
</tr>
</tbody>
</table>

The 5 most enriched transcription factor-binding motifs in a ±2-kb region of the transcriptional start site in MYC-dependent, RANKL-inducible genes (P < 10⁻¹⁰).
deficiency–mediated bone loss (Figure 6A). Strikingly, μCT analysis revealed that MYCΔM mice were almost completely protected against OVX-induced bone loss, whereas MYC WT mice showed significant bone loss 6 weeks after OVX (Figure 6, B and C). Bone histomorphometric analysis also revealed a significant decrease in osteoclast numbers in MYCΔM OVX mice compared with numbers in MYCWT OVX mice (Figure 6D). These results suggest that MYC in osteoclasts plays a crucial role in pathological bone resorption and that MYC is a potential therapeutic target for osteoporosis. However, given the inherent structure of MYC, it is difficult to design a small-molecule inhibitor that directly binds to MYC (32, 33). Thus, we hypothesized that inhibiting downstream effector molecules such as ERRα would be an alternative method for suppressing MYC function. To test whether inhibition of ERRα showed a similar therapeutic efficacy in the treatment of pathological bone loss, we treated OVX mice with XCT790, a small-molecule inhibitor of ERRα, in the OVX osteoporosis model using a therapeutic experimental design. XCT790 treatment was started 3 weeks after OVX and continued for 6 weeks (Figure 7A). To test the efficacy of XCT790 on osteoporosis, we used two different mouse strains with different basal bone density, one with high basal bone mass (26.12% ± 5.12%; Figure 7, C and D) and the other with low basal bone mass (13.30% ± 2.66%; Figure 7, D and E), to account for strain-to-strain variations. XCT790 treatment significantly protected both strains of mice from OVX-induced bone loss (Figure 7, B–E), although the effect of XCT790 was milder than that seen with MYC deficiency. In addition, XCT790 treatment in sham-operated mice had a marginal effect on in vivo bone phenotype and formation, as measured by bone volume, bone formation rate (BFR), and mineral apposition rate (MAR) (Supplemental Figure 17, A–D). Consistently, we also found that XCT790 did not enhance in vitro osteoblastogenesis or activity at the dosage that suppressed osteoclastogenesis (Supplemental Figure 17, E–H). The expression of Runt-related transcription factor 2 (Runx2) was comparable between XCT790- and vehicle-treated cells (Supplemental Figure 17I). Taken together, these results suggest that
inhibition of the MYC/ERRα pathway holds promise for the treatment of bone resorption, especially in conditions associated with increased MYC expression in OCPs.

Discussion

Constraining accelerated bone-resorbing osteoclast differentiation is an effective strategy for the treatment of osteoporosis (34-37). Our study highlights the importance of MYC in physiological and pathological bone remodeling and identifies a MYC/ERRα pathway as an important regulator of oxidative metabolism in osteoclasts. Moreover, targeting ERRα by XCT790 ablated OVX-induced bone loss, an established model for human osteoporosis. These findings highlight the importance of the MYC/ERRα pathway as a potential therapeutic target with translational potential to treat pathological bone resorption.

It is generally accepted that MYC plays an essential role in metabolic mechanisms. Our study shows that MYC is a key determinant of metabolic reprogramming in osteoclasts. Recent studies focused on the role of MYC in metabolism reveal that MYC regulates activation-induced glycolysis and glutaminolysis in T cells (38), and inhibition of MYC-MAX interaction suppresses glutamine metabolism in vitro osteoclastogenesis (7). However, how MYC integrates anabolic metabolism into different cellular functions in a cell type-specific manner is not clear. Our work demonstrates how alteration of metabolic pathways by MYC impacts physiological and pathological bone resorption by osteoclasts. Therefore, our results provide new insights into the role of MYC in metabolic reprogramming during osteoclastogenesis, which has been less studied.

Understanding the molecular determinants of metabolic reprogramming in osteoclasts is important, but the metabolic regulation in osteoclast differentiation is not completely elucidated. Recent studies have shown that effective osteoclastogenesis requires metabolic regulation including glycolytic flux and oxidative phosphorylation (7, 14). Our study adds another layer of complexity in metabolic reprogramming by demonstrat-
clasts are limited, impeding the development of antiresorptive drugs with effective pipelines. We propose that, although MYC is considered undruggable, directly targeting signaling components downstream of MYC can be a strategy to block MYC functions in osteoclasts. ERRα is one of the downstream candidates of MYC, and its inhibitor, XCT790, suppresses osteoclastogenesis and bone loss in the murine post-OVX model of human osteoporosis. While ERRα is important for osteoclast differentiation and activity, ERRα deficiency has been shown to promote bone formation in vivo (42, 43). However, in our study, treatment with XCT790 showed a lack of enhancement of osteoblast function in vivo. The difference between our results and those from ERRα-null mice may be explained by pharmacokinetics and efficiency of XCT790 or by the differences in dosing. Targeting of ERRα by specific small-molecule inhibitors that have an optimal therapeutic window and can suppress excessive bone resorption and promote bone formation may have beneficial effects on pathological bone loss.

In summary, we have identified MYC as a key upstream regulator of RANKL-induced metabolic reprogramming and demonstrated the importance of the MYC/ERRα axis in osteoclasts as an integrator of metabolic reprogramming to promote osteoclast differentiation in physiological and pathological bone resorption.

Figure 6. Ablation of MYC protects mice from OVX-induced pathological bone loss. (A) Schematic diagram illustrating the experimental design. (B and C) μCT analysis of femurs from 19-week-old sham-operated or OVX myeloid-specific MYC-deficient mice (MYCΔM) and control mice (MYCWT). n = 7 sham-operated or OVX MYCWT mice; n = 8 sham-operated or OVX MYCΔM mice. (B) Representative images show trabecular architecture by μCT reconstruction in distal femurs. Scale bars: 1 mm. (C) μCT measurements for the indicated parameters in distal femurs. Bone volume, trabecular numbers, trabecular thickness, and trabecular space were determined by μCT analysis. (D) Osteoclast numbers per bone surface were measured by histomorphometric analysis (n ≥ 4). All data are shown as the mean ± SEM. *P < 0.05, by 1-way ANOVA with Tukey’s post-hoc test.
opening up new lines of investigation to develop novel therapeutic interventions for pathological bone resorption.

Methods

Mice. All animals were maintained in a pathogen-free environment and were monitored by the investigators and staff at the Research Animal Resource Center of the Weill Cornell Medical College. All animals were randomly assigned to experimental groups. We generated MYCΔM mice by crossing Mycfl/fl mice (The Jackson Laboratory) with LysM-Cre (MYCWT) mice (The Jackson Laboratory). All strains were on the C57BL/6/129 background. Littermate MYCWT mice were used as controls. For our MYCΔM mice bone phenotype study, 12-week-old

Figure 7. Therapeutic effect of XCT790 on the osteoporosis model. (A) Schematic diagram illustrating the experimental design. (B and C) μCT analysis of the femurs of sham-operated, vehicle-treated (sham, n = 6), vehicle-treated OVX (vehicle, n = 4), and XCT790-treated OVX (XCT790, n = 5) high-bone-mass C3H mice. (B) Representative images showing trabecular architecture by μCT reconstruction in the distal femurs of C3H mice. Scale bars: 1 mm. (C) μCT measurements for the indicated parameters in distal femurs. (D and E) μCT analysis of the femurs of sham-operated, vehicle-treated (sham, n = 7), vehicle-treated OVX (vehicle, n = 6), and XCT790-treated OVX (XCT790, n = 5) low-bone-mass CD-1 mice. (D) Representative images show trabecular architecture by μCT reconstruction in distal femurs. Scale bars: 1 mm. (E) μCT measurements for the indicated parameters in distal femurs. All data are shown as the mean ± SEM. *P < 0.05, by 1-way ANOVA with Tukey’s post-hoc test.
male (\(n=11\) per group) and female (\(n=6\) per group) MYCΔ\textalpha mice were used. For our OVX-induced bone loss study in MYCΔ\textalpha mice, 13-week-old MYCΔ\textalpha mice and their littermate MYCWT mice were randomly divided into sham-operated or ovariec-
tomized groups (\(n \geq 7\) per group) and were housed in the facility for 6
weeks after the operation. To examine in vitro oxidative phosphory-
lation in the ERR\textalpha-deficient condition, 8-week-old E\textalpha-deficient
male mice and control mice were purchased from The Jackson Lab-
oratory. To analyze the therapeutic effect of XCT790 (R&D Systems),
11-week-old sham-operated or ovariecetomized C3H mice (\(n \geq 4\) per
group) and CD-1 mice (\(n = 5\) per group) from Charles River Laborato-
ries were randomized and treated with either vehicle or XCT790 (5
mg/kg for C3H mice and 2.5 mg/kg for CD-1 mice) i.p. once per day
for 6 weeks, beginning 3 weeks after the operation. XCT790 was pre-
pared in 10% KLEPTOSE (Roquette Pharma) following the manufac-
turer’s instructions.

Analysis of bone phenotype. \(\mu\)CT analysis (44) was performed as
described previously (45), and all samples were included in the analysis,
which was conducted in a blinded manner. For \(\mu\)CT analysis, a Scanco Med-
cal \(\mu\)CT 35 System with an isotropic voxel size of 7 \(\mu\)m was used
to image the distal femur. Scans were conducted in 70% ethanol and
used an x-ray tube potential of 55 kVp, an x-ray intensity of 0.145 mA,
and an integration time of 600 ms. For analysis of femoral bone mass,
a 2.1-mm-wide region of trabecular bone was contoured, starting 280
\(\mu\)m from the proximal end of the distal femoral growth plate. A total
of 250 slices were read in each sample. Femoral trabecular bone was
thresholded at 211 per mille. Femoral cortical bone was thresholded
at 250 slices were read in each sample. Femoral trabecular bone was
thresholded at 211 per mille. Femoral cortical bone was thresholded
at 350 per mille. A Gaussian noise filter optimized for murine bone
was applied to reduce noise in the thresholded 2D image. 3D recon-
structions were created by stacking the thresholded 2D images from the
contoured region. For histopathological assessment, femurs were
fixed in 4% paraformaldehyde for 3 days. These samples were deca-
cified with 10% neutral buffered EDTA (Sigma-Aldrich) and embed-
ded in paraffin. To assess osteoclastogenesis and bone resorption,
sections were stained with tartrate-resistant acid phosphatase (TRAP)
and hematoxylin for osteoclast visualization on trabecular bone with-
in the femur metaphysis. All measurements were performed using
Osteometric software (Osteomeasure) according to standard proce-
dures (46) and were confined to the secondary spongioa and restrict-
ed to an area between 400 and 2,000 mm distal to the growth plate
metaphyseal junction of the distal femur. Osteoclasts were identified
as TRAP-positive cells that were multinucleated and adjacent to bone.

Reagents. Human M-CSF and RANKL were purchased from
Peprotech. The ERR\textalpha inverse agonist XCT790 was purchased from
R&D Systems. The metabolic inhibitors 2-deoxy-D-glucose (2-DG),
6-diazo-5-oxo-L-norleucine (DON), and oligomycin, and the MYC
inhibitor 10058-F4 were purchased from Sigma-Aldrich. The antibod-
ies used for immunoblotting were as follows: NFATc1 (BD Pharmin-
gen; 556602); MYC, ERR\textalpha, and \(\beta\)3 integrin (Cell Signaling Technology;
5605, 13826, and 4702); p38 (Santa Cruz Biotechnology Inc.; sc553);
\(\alpha\)-tubulin (Sigma-Aldrich; T9026); lamin B and PGC1\(\alpha\) (Santa Cruz
Biotechnology Inc.; sc535); and TBP (Thermo Fisher Scientific). Real-time PCR was performed in
triplicate using the iCycler iQ\(\alpha\)THERMAL CYCLER AND DETECTION SYSTEM
(Applied Biosystems) following the manufacturer’s protocol. Expres-
sion of the tested gene was normalized relative to levels of hypoxa-
thine guanine phosphoribosyl transferase (\(Hprt\)) for mice and TATA
box-binding protein (\(TBP\)) for humans. The primer sequences are list-
ed in Supplemental Table 1.

RNA-seq. Total RNA was first extracted. TruSeq Sample Prepa-
rati on Kits (Illumina) were then used to purify poly-A transcripts and
generate libraries with multiplexed barcode adaptors. All samples
passed quality control analysis on a Bioanalyzer 2100 (Agilent Tech-
nologies). Paired-end reads (\(50 \times 2\) cycles, \(75 \times 10^4\) reads per sample)
were obtained on an Illumina HiSeq 2500 at the Weill Cornell Medi-
cal College Genomics Resources Core Facility. The TopHat program
(version 2.0.11) was used to align the reads to the mm10 mouse refer-
cence genome, while the Cufflinks program (version 2.2.0) allowed for
measurements of transcript abundance (represented by fragments per
kilobase of exon model per million mapped reads \(\text{FPKM}\)). Genes and
transcripts with FPKM values below 5 were not included in the analy-
sis. Pearson’s correlation analysis was performed, and heatmaps were
generated using R (version 3.0.2). Data from 2 biological replicates
were used for bioinformatics analysis.
Mitochondrial oxygen consumption measurement. The real-time mitochondrial OCR and extracellular acidification rate (ECAR) were measured using the XF96 Extracellular Flux Analyzer (Seahorse Bioscience) with the Cell Mito Stress Kit (Seahorse Bioscience) following the manufacturer’s instructions. The measurement was normalized to the relative level of DNA determined by measuring the fluorescence intensity of cells stained by SYTO 24 Green Fluorescent Nucleic Acid Stain (Molecular Probes). Briefly, OCPs were seeded on XF96 cell culture microplates (Seahorse Bioscience) at a seeding density of 8 × 10^4 cells per well and stimulated with RANKL (50 ng/ml) for 2 days. Before the assay, the cells were rinsed twice and kept in prewarmed XF assay medium (pH 7.4) supplemented with 1 mM sodium pyruvate, 2 mM glutamine, and 10 mM glucose in a 37°C non-CO2 incubator for 1 hour. Next, the respiratory rate was measured at 37°C in at least 3 replicates per condition by using the following perturbation drugs in succession: 1 μM oligomycin, 2 μM carbonyl cyanide-4-trifluoromethoxyphenylhydrazone (FCCP), and 0.5 μM rotenone/antimycin A. The basal OCR was measured before drug exposure. We calculated the mitochondrial oxygen consumption metrics as described in Supplemental Figure 9 and as directed in the Cell Mito Stress Kit manual (Seahorse Bioscience).

Accession numbers. The RNA-seq data were deposited in the NCBI’s Sequence Read Archive (SRA) under accession number SRP096890.

Statistics. All statistical analyses were performed with GraphPad Prism 5.0 (GraphPad Software) using a 2-tailed, unpaired t test (2 conditions) or 1- or 2-way ANOVA for multiple comparisons (2-conditions) with Tukey’s post-hoc test. A P value of less than 0.05 was considered statistically significant.

Study approval. All animal experiments were reviewed and approved by the IACUC of Weill Cornell Medical College.

Author contributions

SB and MJL conceived, designed, and performed most of the experiments, analyzed data, and wrote the manuscript. EGG contributed to and performed bioinformatics data analysis. VYG and JRC contributed to extracellular flux studies. SHM, KM, and MM contributed to bone phenotype analysis. VYG contributed to ERα experiments. KHPM conceived, designed, and oversaw the project and wrote the manuscript.

Acknowledgments

We thank Lionel B. Ivashkiv, Steven Goldring (Hospital for Special Surgery, New York, NY), Matthew B. Greenblatt (Weill Cornell Medical College, New York, NY) for helpful discussions and critical review of the manuscript and Jae-Hyuck Shim and Yeon Suk Yang (University of Massachusetts Medical School) for micro-CT analysis and helpful discussions. This study was supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH (R00AR061430 and R01AR069562). The contents of this manuscript are solely the responsibility of the authors and do not necessarily represent the official views of the NIH.

Address correspondence to: Kyung-Hyun Park-Min; 535 East 70th Street, New York, New York 10021, USA. Phone: 212.774.7631; Email: ParkminK@hss.edu.