Neural precursor cell–secreted TGF-β2 redirects inflammatory monocyte-derived cells in CNS autoimmunity

Donatella De Feo, …, Melanie Greter, Gianvito Martino

In multiple sclerosis, the pathological interaction between autoreactive Th cells and mononuclear phagocytes in the CNS drives initiation and maintenance of chronic neuroinflammation. Here, we found that intrathecal transplantation of neural stem/precursor cells (NPCs) in mice with experimental autoimmune encephalomyelitis (EAE) impairs the accumulation of inflammatory monocyte-derived cells (MCs) in the CNS, leading to improved clinical outcome. Secretion of IL-23, IL-1, and TNF-α, the cytokines required for terminal differentiation of Th cells, decreased in the CNS of NPC-treated mice, consequently inhibiting the induction of GM-CSF–producing pathogenic Th cells. In vivo and in vitro transcriptome analyses showed that NPC-secreted factors inhibit MC differentiation and activation, favoring the switch toward an antiinflammatory phenotype. Tgfb2−/− NPCs transplanted into EAE mice were ineffective in impairing MC accumulation within the CNS and failed to drive clinical improvement. Moreover, intrathecal delivery of TGF-β2 during the effector phase of EAE ameliorated disease severity. Taken together, these observations identify TGF-β2 as the crucial mediator of NPC immunomodulation. This study provides evidence that intrathecally transplanted NPCs interfere with the CNS-restricted inflammation of EAE by reprogramming infiltrating MCs into antiinflammatory myeloid cells via secretion of TGF-β2.

Find the latest version:
https://jci.me/92387/pdf
Neural precursor cell–secreted TGF-β2 redirects inflammatory monocyte-derived cells in CNS autoimmunity

Donatella De Feo,1,2 Arianna Merlini,1,2 Elena Brambilla,3 Linda Ottoboni,1 Cecilia Laterza,1 Ramesh Menon,3 Sundararajan Srinivasan,3 Cinthia Farina,3 Jose Manuel Garcia Manteiga,4 Erica Butti,1 Marco Bacigaluppi,1,2 Giancarlo Comi,2 Melanie Greter,4 and Gianvito Martino1

1Neuroimmunology Unit, Department of Neurology, Immunobiology of Neurological Disorders Lab, Institute of Experimental Neurology, Division of Neuroscience, and 2Center for Translational Genomics and BioInformatics, San Raffaele Scientific Institute and Vita Salute San Raffaele University, Milan, Italy. 3Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland.

In multiple sclerosis, the pathological interaction between autoreactive Th cells and mononuclear phagocytes in the CNS drives initiation and maintenance of chronic neuroinflammation. Here, we found that intrathecal transplantation of neural stem/precursor cells (NPCs) in mice with experimental autoimmune encephalomyelitis (EAE) impairs the accumulation of inflammatory monocyte-derived cells (MCs) in the CNS, leading to improved clinical outcome. Secretion of IL-23, IL-1, and TNF-α, the cytokines required for terminal differentiation of Th cells, decreased in the CNS of NPC-treated mice, consequently inhibiting the induction of GM-CSF–producing pathogenic Th cells. In vivo and in vitro transcriptome analyses showed that NPC-secreted factors inhibit MC differentiation and activation, favoring the switch toward an antiinflammatory phenotype. Tgfb2−/− NPCs transplanted into EAE mice were ineffective in impairing MC accumulation within the CNS and failed to drive clinical improvement. Moreover, intrathecal delivery of TGF-β2 during the effector phase of EAE ameliorated disease severity. Taken together, these observations identify TGF-β2 as the crucial mediator of NPC immunomodulation. This study provides evidence that intrathecally transplanted NPCs interfere with the CNS-restricted inflammation of EAE by reprogramming infiltrating MCs into antiinflammatory myeloid cells via secretion of TGF-β2.

Introduction

Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS), representing the most common CNS inflammatory disorder and the second leading cause of disability in young adults. In experimental autoimmune encephalomyelitis (EAE), the animal model of MS, myelin-reactive pathogenic T helper (Th) cells enter the CNS at the level of pial vessels and are reactivated in the subarachnoid space by meningeal perivascular macrophages (1) that allow pathogenic Th cells tissue entry and initiation of inflammation (2). Pathogenic Th cells induce, through granulocyte-macrophage colony-stimulating factor (GM-CSF), an inflammatory program in monocytes and their progeny, monocyte-derived dendritic cells (moDCs) (2, 3). In the CNS, moDCs function as antigen-presenting cells (APCs) to pathogenic Th cells, secreting polarizing cytokines such as IL-1, IL-23, IL-6, and TNF-α (4–7), and directly contribute to myelin and axonal loss via phagocytosis and the production of ROS and other neurotoxic mediators (3, 8).

Although available therapies for MS effectively target the recruitment of T cells from the periphery into the CNS (9), there is no conclusive evidence regarding their ability to target either the self-maintaining inflammatory cycle that occurs locally within the CNS or the pathogenic phenotype of CNS-infiltrating monocyte-derived cells (MCs) (10).

Neural precursor cells (NPCs) have been previously studied as a therapeutic strategy for MS for their regenerative potential, and, more recently, for their neuroprotective and immunomodulatory properties (11–14). NPCs express chemokine receptors and adhesion molecules that allow them, upon transplantation, to reach inflamed areas in the CNS (11, 15–17) and to release a variety of cytokines and neurotrophins that can inhibit the adaptive and innate immunity (18–20). While previous studies found intrathecal transplantation of NPCs to ameliorate EAE disease severity (14, 21, 22), the immunological mechanism underlying the therapeutic efficacy of NPCs delivered in the inflamed CNS still remains unknown.

In this work we investigated whether intrathecal NPC treatment could directly interfere with the CNS-restricted crosstalk between pathogenic Th cells and inflammatory MCs. We found that NPC treatment impaired the accumulation of infiltrating MCs in the CNS and reduced EAE disability. In fact, NPCs limited the expression of cytokines required for the polarization of encephalitogenic GM-CSF–producing Th cells. NPCs inhibited in vivo and in vitro DC differentiation and maturation, favoring a fate switch toward an antiinflammatory phenotype. We identified TGF-β2 as the primary factor secreted by NPCs for the observed therapeutic effect in the chronic phase of EAE.
Results

Intrathecal NPC transplantation ameliorates EAE by reducing inflammatory MCs in the CNS. To examine the capacity of NPC transplantation to inhibit the CNS-restricted inflammation occurring in EAE, we first validated the therapeutic potential of intrathecal NPC injection in C57BL/6 mice immunized with myelin oligodendrocyte glycoprotein (MOG)\textsubscript{35-55} peptide. One million NPCs in PBS (NPC-treated) or PBS alone (PBS-treated) was intrathecally injected into the cisterna magna at the peak of disease severity, 4 days after clinical onset. We observed that NPC-treated mice displayed faster recovery and lower disability compared with EAE mice treated only with PBS (Figure 1A). At 1 month after treatment (60 days postimmunization [dpi]), NPC-treated mice showed significantly lower neurological impairment, and at the end of the follow-up (80 dpi), NPC-treated mice showed either complete functional recovery or minor tail paralysis, while PBS-treated mice maintained an overt paresis of the hind limbs. Accordingly, NPC-treated mice displayed a lower lesion burden measured as demyelination and axonal loss in the spinal cord at the end of follow-up (Figure 1, B–D). Interestingly, we found 2 weeks after treatment (40 dpi) a significant reduction of the inflammatory infiltrate areas (Figure 1E) and in particular of CD3+ T cells (Supplemental Figure 1A; supplemental material available online with this article; https://doi.org/10.1172/JCI92387DS1) and of IB4+ phagocytes (Supplemental Figure 1B) in the spinal cord of NPC-treated compared with PBS-treated mice. We further observed that NPC-treated mice, compared with PBS-treated controls, already at this early time point, displayed a parallel reduction of both inflammation (IBA1+ areas) and demyelination (MBP+ areas) in the spinal cord (Supplemental Figure 1, C and D). At this same time point, we observed that most transplanted GFP+ NPCs localized in the subarachnoid space of cerebellum, brainstem, and cervical spinal cord, with similar spatial distribution of infiltrating extraparenchymal CD11b+ myeloid cells (Figure 2, A and B, and Supplemental Figure 2A). Transplanted NPCs were found in proximity to meningeal vessels and CD45+ perivascular inflammatory cells,
including CD4+ T cells, CD11b+ myeloid cells, MHC class II+ cells, and CD11c+ DCs (Figure 2, C–F). Transplanted NPCs retained an undifferentiated phenotype up to the end of follow-up, at 80 dpi, displaying only in low percentage markers for neuronal (β-tubulin III, β-tub III)*, oligodendroglial (oligodendrocyte lineage transcription factor 2, Olig2)*, or astroglial lineage (glial fibrillary acidic protein, GFAP)* (Supplemental Figure 2, B–D and G). Further, transplanted NPCs expressed the stem cell marker nestin and the proliferation marker Ki-67 (Supplemental Figure 2, B–D and G). Notably, intrathecally transplanted GFP+ NPCs were detected only in the CNS of NPC-transplanted mice (Supplemental Figure 3, A and B), while NPCs were found neither in peripheral organs (Supplemental Figure 3, C–E) nor in secondary lymphoid organs (Supplemental Figure 3, F–H).

To better investigate the mechanism regulating the clinical and pathological recovery induced by transplanted NPCs, we performed flow cytometry analysis of CNS-resident and infiltrating inflammatory cells of EAE mice 7 days after NPC or PBS treatment. We observed a significant reduction in frequency and cell number of inflammatory MCs (CD45*CD11b+Ly6G-Ly6C+CD11c+MHC-II*) (23) as well as a trend of reduction of infiltrating lymphoid cells (CD45*CD11b+) in the CNS of NPC-treated compared with PBS-treated EAE mice (Figure 3, A–C). Microglia (CD45*CD11b+Ly6G-Ly6C+) were not quantitatively altered after NPC treatment (Figure 3, A and D), but displayed lower expression of MHC-II, suggestive of a lower activation state.

NPC treatment hampers the effector phase of EAE. The accumulation of myeloid cells in the CNS during the effector phase of EAE relies on the ability of CNS-invading Th cells to secrete GM-CSF (2, 3). NPC-transplanted mice had significantly lower frequencies of GM-CSF+ cells in CNS-infiltrating Th1 and Th17 cells (Figure 4A) as well as in total CD4+ T cells (Figure 4B). No significant difference between NPC- and PBS-treated mice, neither in the frequency of FoxP3+ Tregs nor in the level of FoxP3 expression by CNS-infiltrating CD4+ T cells, was observed (Figure 4, C and D). Consistently, CD4+ T cells in the CNS showed significantly lower expression of transcripts related to Th17 pathogenicity (24), such as Il23r, Rorc, Tbx21, Il22, Cxcl3, and Csf2, in NPC-treated mice (Figure 4E). Furthermore, GM-CSF levels were significantly reduced in the hindbrain and cervical spinal cord of NPC-treated mice (Figure 4F).

The capacity of autoreactive Th cells to secrete GM-CSF depends on the production of proinflammatory cytokines by moDCs (2, 3, 7, 25). Seven days after transplantation, we found...
significantly lower expression of \textit{Il23a} and \textit{Tnfa} transcripts in the CNS inflammatory infiltrate of NPC-treated mice (Figure 5A). Moreover, IL23p19 protein levels were significantly reduced in the CNS of NPC-transplanted mice (Figure 5B). Accordingly, cytokine profiling of CNS tissues revealed also decreased levels of IL-1β and TNF-α and of IL-23-related factors such as G-CSF, CXCL1, and IL-17A (Figure 5C). These findings support the idea that NPC treatment dampens the production of polarizing cytokines by inflammatory MCs, which in turn reduce GM-CSF production and the pathogenic potential of CNS-invading Th cells.

\textbf{NPC-secreted factors inhibit maturation of DCs and their capacity to trigger GM-CSF production in myelin-reactive T cells.}

We hypothesized that an NPC-secreted factor could inhibit the antigen-presenting and proinflammatory properties of myeloid cells. To investigate this hypothesis, we exposed in vitro bone marrow–derived DCs (BMDCs) to NPC-conditioned medium (NCM) or control DC culture medium (DCM) during stimulation with CD40L, mimicking T cell interaction with APCs. BMDCs exposed to NCM expressed lower levels of MHC-II and of the costimulatory molecules CD80 and CD86 compared with BMDCs in DCM (Figure 6, A and D). Cytokine profiling showed that BMDCs exposed to NCM produced a significantly lower amount of polarizing cytokines, including TNF-α, IL23p19, IL-6, and IL12p70 and chemokines such as CXCL10, CXCL1, and G-CSF (Figure 6B). We further confirmed the inhibitory effect of NCM by ELISA (Figure 6C) and quantitative PCR (Figure 6D). Finally, we assessed the ability of BMDCs exposed to NCM during CD40L stimulation to reactivate CD4+ T cells from MOG 35–55 peptide–immunized 2D2 mice. Conditioning of BMDCs with NCM during CD40L stimulation decreased their ability to induce the production of GM-CSF in Th1 and Th17 cells (Figure 7).
Unsupervised hierarchical clustering clearly separated NCM-treated mDC from control mDC, both at the early (6 hours) and at the late (18 hours) time point (Figure 8B). Subclustering analysis at each time point highlighted subsets of genes shared only between mDC-NCM and iDCs, suggesting an impairment of the CD40L-induced maturation by NPC-secreted factors (Figure 8B). However, the exposure to NCM during CD40L stimulation instructed in DCs a specific gene expression signature, demonstrating the induction of an alternative program of activation/differentiation.

Indeed, gene ontology analysis identified enriched functional groups associated with metabolic processes (Arg1, Arg2, ferroportin-1), macromolecule biosynthesis, regulation of transcription (Cbx5 and Ilech), and programmed cell death in mDC-NCM at the early time point (Figure 8C). Genes related to oxidative stress and apoptosis resistance, such as Ak2, Tgm2, and Smarca2 (26, 27), were upregulated whereas proapoptotic genes such as...
Figure 5. NPC transplantation impairs the production of polarizing cytokines by CNS-infiltrating APCs. (A) Expression of Il23 and Tnf in CNS leukocytes isolated from EAE mice at 7 days after PBS or NPC treatment, relative value to PBS-treated mice (n = 3 mice per group). Data are representative of 2 independent experiments. (B) ELISA for IL23p19 in hindbrain and cervical and dorsal spinal cord tissues from PBS- and NPC-treated EAE mice obtained at the same time point as A (n = 3 mice per group). Data are representative of 2 independent experiments. (C) Cytokine profile in hindbrain tissues of PBS- and NPC-treated mice obtained at the same time point as A. Hindbrain tissue lysates were analyzed for expression of various cytokines by Luminex-based assay (n = 10 mice per group). Black bars, PBS-treated; white bars, NPC-treated. Data are mean ± SEM. *P ≤ 0.05, **P ≤ 0.01, unpaired t test.

TNfrsf6 (Fas) were downregulated in mDC-NCM. In addition, NCM induced in DCs transcripts related to the alternative or antiinflammatory phenotype, such as Arg1, Maf, Iitch, Stab1, and Tgms2 (28–32). Accordingly, mDC-NCM also upregulated the expression of Ddx21, which is required for the induction of SI00A9 (33), an immunity marker of myeloid-derived suppressor cells (MDSCs) (ref. 34; Figure 8, B and E; and Supplemental Table 1). At 18 hours, the gene ontology analysis of NCM-regulated genes confirmed the NCM-induced shift of mDC toward an antiinflammatory activation. Indeed, NCM-treated mDC had a significantly lower expression of genes encoding proinflammatory chemokines (Ccl1, Ccl2, Ccl3, Ccl7, Ccl8, Cxcl2) (3, 35), positive regulators of cytokine production (Cd36, Il33, Clec9a, and Clec5a) (36–39), and phagocytosis-related genes (Ptxs, Elmo2, Clec7a) (ref. 3 and Figure 8, B, D, and F). Conversely, NCM-induced the antiinflammatory molecules Hspa1a, which impairs the stimulatory capacity of moDCs (40), and Ilr2, the IL-1 decoy receptor that blocks IL-1 signaling in inflammatory macrophages (41) and the NF-κB inhibitor Ascl1 (ref. 42; Figure 8, B, D, and F; and Supplemental Table 1).

Transcription factor analysis of early (6 hours) NCM-regulated genes showed an enrichment in positively regulated transcripts controlled by c-Myc, a master regulator in macrophage alternative activation (43, 44), and c/EBPβ, which is the main regulator of MDSC differentiation (ref. 45 and Supplemental Figure 4A). At the later time point (18 hours), many negatively regulated transcripts were enriched in genes controlled by PU.1 (46) and NF-κB1, both pivotal in DC differentiation and maturation (Supplemental Figure 4B, Supplemental Table 2, and refs. 46, 47).

When we compared the differentially expressed genes of CD40L-induced maturation in the absence (iDCs vs. mDC) or presence of NCM (iDCs vs. mDC-NCM), we identified pathways only modulated during the maturation induced in the presence of NPC-secreted factors. The pathways included at 6 hours the anti-inflammatory phenotype, such as Arg1 (49), known to be inhibited by TGF-β, were downregulated, while Arg1, which is induced by TGF-β (ref. 50; Figure 8, A and E; and Supplemental Table 1), was increased. Similarly, CD36 and Il33, both inhibited by TGF-β, were significantly downregulated in mDC-NCM at 18 hours (ref. 51; Figure 8, B, D, and F; and Supplemental Table 1).

We therefore investigated whether NPCs could influence myeloid cell differentiation and activation also in vivo and possibly through TGF-β signaling during EAE. To this end, MOG35–55-immunized EAE mice were injected, at the peak of the disease, with 106 NPCs or vehicle. At 7 days after transplantation, CNS-infiltrating MCs were FACs-sorted (Figure 9A) and mRNA was extracted. Next-generation sequencing was performed, and genome-wide profiles were generated and compared between MCs isolated from the CNS of NPC-treated animals and PBS-treated animals in EAE. We identified 610 genes that were differentially expressed with the significance threshold of P ≤ 0.01 (Figure 9B and Supplemental Table 3). Hallmark gene set enrichment analysis confirmed the modulation of metabolic processes and of several immunological pathways, including TGF-β signaling, the IFN response, and genes upregulated by ROS, in MCs from NPC-treated mice (Figure 9, C and D). In line with in vitro data, transcription factor analysis found c-Myc and CREB1 (Supplemental Figure 6 and Supplemental Table 4), master transcription factors for the alternative activation of macrophages (43, 52), as main regulators of NPC-induced gene signature in CNS-infiltrating MCs.

Overall these findings suggest that NPC-secreted factors skewed the inflammatory differentiation program of MCs toward an alternative/antiinflammatory activation (53), possibly through TGF-β signaling, both in vitro, during DC activation, and in vivo, in the inflamed CNS.

TGF-β2 mediates the inhibitory effect of NPCs on DC maturation. We next focused on identifying the secreting factor(s) responsible for the observed immunomodulatory effects of NPCs on inflammatory DCs.

First, we observed that NCM inhibits the production of IL-23 by CD40L-stimulated BMDCs in a dose-dependent manner (Supplemental Figure 7A). To investigate the nature of the secreted factor, NCM frozen at −20°C was thawed and then filtered through a 0.1-μm filter (Supplemental Figure 7B). The process did not alter NCM inhibitory activity, indicating that the factor is neither apoptotic TNFs/NF-κB/BCL-2 pathway and NFAT in immune response (Supplemental Figure 5A), and at 18 hours IL-4-induced regulators, p53 signaling, NO synthesis and signaling, Fas signaling, and TGF-β-dependent activation, and were associated with an alternative activation of DCs (Supplemental Figure 5B).

Specifically, among early NCM-regulated genes, Rad51 (48) and Arghap15 (49), known to be inhibited by TGF-β, were downregulated, while Arg1, which is induced by TGF-β, were significantly downregulated in mDC-NCM at 18 hours (ref. 51; Figure 8, A and E; and Supplemental Table 1).
released as exosome nor as microvesicle. Further, size fractionation demonstrated that the inhibitory activity of NCM on DC maturation was absent when the secretome of ≤3 kDa was used, excluding small molecules as possible mediators of NCM effect (Supplemental Figure 7C). However, proteinase K treatment or heat inactivation (80°C) abolished NCM activity (Supplemental Figure 7D), indicating that the active secreted factor was a protein.

Since transcriptome analyses suggested the involvement of TGF-β signaling in the modulation of myeloid inflammatory cells by NPCs (Figures 8 and 9), we focused our investigation on elements of the TGF-β family, morphogenic factors with known immunomodulatory and tolerogenic effects on both T cells and DCs (54–58). NPCs release in vitro TGF-β2 and are equipped to promote activation of latent TGF-β2, via matrix metalloproteinases and thrombospondins (Figure 10A). We further showed that BMDCs express receptors to transduce TGF-β signaling (Figure 10A). Supplementation of BMDC culture with TGF-β2 resulted in marked and dose-dependent inhibition of IL-23 secretion by CD40L-stimulated BMDCs (Figure 10C). Consistently, pharmacological inhibition of TGF-β signaling with SB431542, the tyrosine kinase inhibitor of TGF-β receptor 1 (TGFBRI), or with ITD1, which induces the proteasomal degradation of TGF-β receptor 2 (TGFBRII) (59), reverted almost completely the effect of NCM on DCs (Figure 10, D and E).

Furthermore, we confirmed that TGF-β2 signaling on BMDCs was required for NPC immunomodulation, since the
in EAE mice. Tgfb2–/– eNPCs distributed within the perivascular space of the leptomeningeal vessels nearby inflammatory CD11b+ cells, similarly to WT eNPCs (Tgfb2+/+) (Figure 11, A and B). However, Tgfb2–/– eNPCs were not effective in inducing the clinical amelioration observed after WT eNPC transplantation (Figure 11C). Moreover, Tgfb2–/– eNPCs did not hamper demyelination, axonal damage, and inflammatory infiltration due to EAE (Figure 11, D–F). Consistently, Tgfb2–/– eNPCs failed to prevent accumulation of the inflammatory MCs in the CNS of EAE mice (Figure 11G) and upregulation of MHC-II on microglia (Figure 11H). Accordingly, WT NPC treatment, unlike Tgfb2–/– eNPC or PBS treatment, significantly increased the frequency of SMAD2 phosphorylation in CNS-infiltrating CD11b+ myeloid cells, thus supporting that the therapeutic effect of NPCs acts through the activation of the TGF-β pathway in CNS-infiltrating MCs (Figure 11I).

We tried to recapitulate the therapeutic effect of NPCs via intrathecal injection in the cisterna magna of a lentiviral vector expressing TGF-β2. The resulting increased expression of TGF-β2 at the peak of EAE severity within the CNS was sufficient to induce clinical amelioration in EAE mice, when compared with control mice receiving GFP-expressing control lentiviral construct (Supplemental Figure 10).

Altogether our data indicate that TGF-β2 production by transplanted NPCs is necessary for NPC immunomodulatory effect on pathogenic properties of myeloid cells in vitro and in vivo and is nonredundant for NPC therapeutic effect in EAE.

Furthermore, increasing the intrathecal levels of TGF-β2 at the peak of EAE disease severity resulted in accelerated clinical recovery.

Discussion

In this study we provide evidence that intrathecally injected NPCs interfere with the pathogenic properties of CNS-infiltrating MCs via the secretion of the immunomodulatory cytokine TGF-β2.

Figure 7. BMDCs matured in the presence of NPC-secreted factors fail to polarize MOG35–55-specific CD4+ T cells toward GM-CSF production. (A and B) Frequency of Th1 (GM-CSF+IFN-γ+) and Th17 (GM-CSF+IL-17+) among 2D2 CD4+ T cells stimulated with MOG35–55 in the presence of BMDCs cultured as described in Figure 6 are shown in the plots (A) and graphs (B) (n = 3–4 samples per group). *P ≤ 0.05, ***P ≤ 0.001, 1-way ANOVA with Bonferroni’s post-test. Gray bars, iDCs; black bars, mDC; white bars, mDC-NCM. Data are mean ± SEM and are representative of 2 independent experiments.
Figure 8. NPC-secreted factors redirect the transcriptional program of BMDC maturation toward an alternative activation. (A) Workflow of microarray gene expression analysis at 6 and 18 hours showing the differential expression between control medium (mDC) and NCM-cultured BMDCs (mDC-NCM) during CD40L-induced maturation. (B) Unsupervised hierarchical clustering of expression profiles of 130 and 175 differentially modulated genes with ≥1.3-fold change and a $P \leq 0.01$ in mDC-NCM and mDC at 6 and 18 hours in culture, respectively, compared with the expression profiles of the same transcripts in unstimulated BMDCs (iDCs). Dashed lines indicate subclusters of genes that in mDC-NCM return to the expression levels observed in iDCs. (C) Gene ontology enrichment of differentially modulated genes between mDC-NCM and mDC at 6 and 18 hours. The gray scale indicates the statistical significance (FDR ≤0.05). (D) Color-coded ratio of mDC-NCM over mDC showing NCM-regulated genes at 18 hours, clustered to the indicated pathways (blue means downregulation, red upregulation). Significance is shown alongside. $*P \leq 0.05$, $**P \leq 0.01$, $***P \leq 0.001$, unpaired t test. (E and F) Quantitative PCR validation of indicated differentially expressed genes in mDC-NCM compared with mDC at 6 (E) and 18 hours (F); the expression is relative to mDC ($n = 3$ samples per group). $*P \leq 0.05$, $**P \leq 0.01$, unpaired t test.
Figure 9. NPC treatment alters the gene expression signature of CNS-infiltrating inflammatory MCs in EAE. (A) Cohorts of 4-7 MOG₃₅₋₅₅-immunized C57BL/6 mice intrathecally treated with either PBS or NPCs at the peak of the disease (2-4 days after clinical onset). At 7 days after transplantation, CNS tissues were pooled and CNS-infiltrating MCs were FACS-sorted according to the phenotype CD45^{hi}Ly6G[−]CD11b⁺Ly6C^{hi}MHC-II⁺. Sorting strategy used for 3 independent FACS sorting experiments is shown. (B) Next-generation sequencing was performed on RNA extracted from sorted cells of 3 independent experiments and respective CNS harvests. Six hundred ten genes that are significantly altered in 3 different statistical tests to a minimum significance threshold of P ≤ 0.01 are shown in the heatmap. (C) Volcano plot showing the fold change and significance of genes in MCs from PBS- versus NPC-treated EAE mice. (D) Bipartite graph of functional enrichment analysis using hallmark data set for NPC treatment obtained by Cytoscape software (http://www.cytoscape.org/). Black and gray nodes represent enriched pathways with sizes corresponding to FDR-adjusted enrichment P value (P ≤ 0.05). Red dots represent upregulated genes and blue dots downregulated genes, whereas the dot size indicates significance (P ≤ 0.01).
We initially observed that intrathecally transplanted NPCs distribute within the leptomeningeal perivascular space of EAE mice, close to myeloid infiltrating cells and pathogenic Th cells, and maintain mainly an undifferentiated phenotype. This localization within the leptomeninges, an important site for the reactivation of autoaggressive Th cells by meningeal perivascular macrophages (1), allows NPCs to impact on CNS-restricted immunopathogenic events.

Indeed, intrathecal transplantation of NPCs reduces during overt EAE the accumulation within the CNS of inflammatory infiltrating cells and in particular of monocytes and their progeny, MCs, and also restrains microglia activation, leading to a long-term amelioration of disease-related disability. Inflammatory Ly6C+ monocyte-derived DCs are indeed a key pathogenic myeloid cell population in the CNS of EAE mice (63, 64). EAE severity correlates with the number of monocytes in the spinal cord, and mice in which monocytes are inhibited from entering the CNS are protected against EAE development (35, 65, 66). The reduced infiltration of MCs in the CNS of NPC-treated mice and the evidence of lower microglia activation have been similarly observed in GM-CSF-depleted EAE mice (2, 67, 68). In fact, mice lacking GM-CSF do not develop EAE, since the accumulation of leukocytes is abolished, despite the initial CNS invasion by CD4+ T cells (2, 69, 70).

Interestingly, we found that, early after treatment, NPC-injected EAE mice have reduced GM-CSF–producing pathogenic Th cells infiltrating the CNS and lower expression of genes related to Th17 pathogenic signature, including IL23r, essential for the maturation of effector Th17 cells (24, 74–76). The acquisition of Th17 pathogenic potential is a multistep process that starts in secondary lymphoid organs and can be completed only in the target tissue (75). MCs act as blood-borne APCs, sustaining encephalitogenic Th cell reactivation and full differentiation within the inflamed CNS through the secretion of proinflammatory cytokines (4, 5, 7, 63). Our data reveal that NPC treatment reduces in the CNS the burden of polarizing cytokines, including IL-1 and IL-23, required for the generation of pathogenic GM-CSF–producing Th cells.

Considering that intrathecally transplanted NPCs maintain an undifferentiated phenotype, we hypothesized a paracrine effect of NPCs, acting via the secretion of cytokines, growth factors, or morphogens to modulate infiltrating myeloid inflammatory cells. Accordingly, NPC-secreted factors recapitulated in vitro the NPC inhibitory effect on the ability of DCs to secrete polarizing cyto-

![Figure 10. NPCs inhibit BMDC maturation in vitro via TGF-β2.](image)

- **A** Color-coded expression heatmap of selected TGF-β family growth factors and TGF-β activating enzymes in NPCs (left) and of their relative receptors on mDC (CD40L-stimulated BMDCs; right). Data are represented as ΔCt over Gapdh (note that a higher ΔCt denotes a lower expression level). **B** ELISA for TGF-β2 performed on NCM from NPCs cultured in DC medium for 2, 6, 24, and 48 hours. **C** Quantification by ELISA of IL23p19 secreted in the supernatant of mDC cultured either in control medium (black bar) or in the presence of recombinant TGF-β2 at increasing concentrations (gray bars). **D** and **E** Quantification by ELISA of IL23p19 secreted by mDC cultured either in NCM alone (white bar) or in the presence of the TGFβRII tyrosine kinase inhibitor SB431542 (gray striped bar) versus mDC lacking TGFβRII in CD1c+ cells. Data in **D** are fold induction (FI) relative to mDC matured in control medium subjected to the same treatment. **E** ELISA for TGF-β2 performed on NCM from NPCs cultured in DC medium for 2, 6, 24, and 48 hours. **F** Quantification by ELISA of IL23p19 secreted by mDC cultured either in NCM alone (white bar) and CD11c-Cre+ Tgfb2+/– (gray bar) versus CD11c-Cre+ Tgfb2+/+ (gray striped bar) mDC lacking TGFβRII in CD1c+ cells. Data are represented as 1-way ANOVA with Bonferroni’s post-test (**P** ≤ 0.01, ***P** ≤ 0.001, ****P** ≤ 0.0001).
Figure 11. NPC-secreted TGF-β2 is nonredundant for the therapeutic effect. (A and B) Representative immunostainings showing similar localization of GFP- Tgfβ2+/− (A) and Tgfβ2−/− (B) eNPCs (green) in meningeal perivascular areas in proximity to CD11b+ cells (red). Nuclei stained with DAPI (blue). Scale bars: 25 μm. (C) Left: Clinical scores of EAE mice treated with intrathecal injection of PBS (black dots), Tgfβ2+/− eNPCs (red dots), or Tgfβ2−/− eNPCs (gray dots) at the peak of the disease (arrow) (n = 10 mice per group). Each point represents the mean ± SEM. *P ≤ 0.05, 2-way ANOVA with Bonferroni’s post-test. Right: Linear regression curves from day of treatment (18 dpi); dashed lines indicate 95% CI. ***P ≤ 0.001. (D–F) Quantification of spinal cord demyelination (Luxol fast blue staining) (D), axonal loss (Bielchowsky silver staining) (E), and inflammatory infiltration (H&E staining) (F) at 60 dpi in EAE mice treated with Tgfβ2−/− eNPCs (gray bars), Tgfβ2−/− eNPCs (white bars), and PBS (black bars) (n = 20 sections per mouse, 4 mice per group). Data are mean ± SEM and represent the percentage area of damage per total section area. *P ≤ 0.05, unpaired t test. (G) Flow cytometry of CNS leukocytes from EAE mice treated as in C, assessed at day 7 after transplantation (n = 4 per group). Frequencies of inflammatory MCs (CD45+CD11b+Ly6G+Ly6C−CD11c−MHC-II+) are shown in the plots and quantified in the graph. Black bars, PBS; white bars, Tgfβ2−/− eNPCs; gray bars, Tgfβ2−/− eNPCs. (H) Levels of MHC-II on microglia in EAE mice treated with PBS (black line), Tgfβ2−/− eNPCs (red line), and Tgfβ2−/− eNPCs (gray line) at the same time point as I are shown in the histogram and quantified in the graph (n = 4 per group). *P ≤ 0.05, 1-way ANOVA followed by Bonferroni’s post-test. (I) Confocal images and frequency of phospho-STAT3+ cells over CD11b+ cells in the spinal cord of EAE mice treated with PBS, Tgfβ2−/− eNPCs, and Tgfβ2−/− eNPCs, 7 days after treatment (n = 8–12 inflammatory infiltrates per mouse; n = 3 mice per group). ***P ≤ 0.001, 1-way ANOVA followed by Bonferroni’s post-test. Data are mean ± SEM and are representative of 2 independent experiments.

kines, including IL-23, IL12p70, TNF-α, and IL-1β, and to drive the differentiation of GM-CSF-producing pathogenic Th cells.

Transcriptome analyses revealed that NPC-secreted factors induce a profound rearrangement of chromatin organization, metabolism, and biosynthetic processes in myeloid cells. These modifications lead to the reprogramming of inflammatory DCs toward an alternative activation state, defined by the downregulation of proinflammatory chemokines (Ccl2, Ccl3, Ccl5, Cxcl10, Cxcl12) (35) and of positive regulators of cytokine production (Cd36, refs. 36, 37; Il13, ref. 38; Clec9a, ref. 39; and Clec5a) and by the upregulation of tolerogenic genes, such as hepcidin (76), Il1r2 (41), and Ascl2 (42).

Interestingly, transcription factor analyses suggested that the effect of NPCs on MCs might involve the activation of c-Myc, c/EBPβ, and CREB1, known to control M2 polarization and MDSC differentiation (45, 77), as well as the inhibition of PU.1, known to maintain the identity and inflammatory phenotype of DCs (46, 78). Gene set enrichment analysis confirmed that NPC treatment of EAE promoted in CNS-invading MCs a program of alternative activation via c-Myc activation and indicated TGF-β signaling as a possible upstream coordinator of the NPC-dependent antiinflammatory polarization of CNS-infiltrating MCs.

In line with our findings, a recent report has demonstrated that the upregulation of inhibitor of differentiation 1 (ID1), in response to tumor-derived factors, including TGF-β, is responsible for the switch from DC differentiation to MDSC differentiation during tumor progression (78). In fact, the generation of the 2 tolerogenic myeloid cell populations, MDSCs and tumor-associated macrophages, in tumor-bearing hosts requires the integration of at least 2 types of signals: factors that expand myeloid precursors such as M-CSF, G-CSF, and GM-CSF (79), followed by factors that activate immune-regulatory programs. Besides classic Th2 cytokines (e.g., IL-4 and IL-13), chemokines (e.g., CCL5, CXCL12, and CX3CL1) as well as growth factors and noncanonical chemotactic peptides (e.g., VEGF-a, TGF-β, basic FGF, and antimicrobial peptides) (80) can contribute as “second signal” to monocyte recruitment and tolerogenic macrophage differentiation (45). In our study of intrathecal NPC treatment during the effector phase of EAE, we hypothesized that the inflammatory milieu provides abundant proliferative stimuli to the CNS-infiltrating myeloid compartment, while NPC-secreted TGF-β2 could impart the antiinflammatory signal. TGF-β signaling is necessary to prevent autoimmunity (81), and the signaling through the TGFβRIs in DCs is a prerequisite to control EAE autoimmune response (82). Moreover, TGF-β limits at the site of inflammation the differentiation of highly mature DCs as a means of restricting Th17 cell differentiation and controlling autoimmunity (83).

In our experimental setting, TGF-β2 was found to be the most expressed among TGF-β family members in NPCs, and gain- and loss-of-function experiments demonstrated that TGF-β2 recapitulates the immunomodulatory effect of NPCs in vitro. In support of the role of TGF-β2, the transplantation of TGF-β2-deficient NPCs, during the EAE effector phase, failed to induce the expected clinical and neuropathological improvement, since it did not prevent the accumulation of MCs in the CNS. This finding indicates that TGF-β2 is required for efficient immunomodulation by transplanted NPCs, since a different source of NPCs (eNPCs), lacking only TGF-β2, did not display a therapeutic effect in our experimental setting. Moreover, increasing TGF-β2 levels in the CNS with intra-thecally targeted gene therapy significantly ameliorated the chronic phase of EAE. TGF-β2 is constitutively expressed by astrocytes in the adult CNS, and little is known about its function during neuroinflammation. It has been suggested that TGF-β2 plays a central role in the maintenance of CNS immune privilege, and downregulation of astrocyte-derived TGF-β2 by T cell– and myeloid-secreted inflammatory cytokines appears to be a critical step for the induction and maintenance of neuroinflammation (84–86).

Altogether our data prove that increasing TGF-β signaling in the CNS is sufficient to interfere with differentiation and activation of MCs, which are recognized as the primary cell population sustaining neuroinflammation and the final effectors of tissue damage in CNS autoimmunity. In line with our findings, a recent work demonstrated that the selective deletion of TGFBRII in moDCs leads to the retention of moDCs in the CNS and to the development of more severe chronic EAE with increased irreversible tissue damage and no remission (87).

Compelling evidence demonstrates how ablation monocytes in the effector phases of EAE ameliorates disease progression and disability (35, 88). However, a phase II clinical trial with MLN1202, a human antibody blocking CCR2, failed to induce clinical amelioration in MS patients (3). A possible explanation is that this antibody could mainly act via peripheral ablation of monocytes, many of which, at this time point, might have already migrated into the CNS and undergone local differentiation and activation (3). Instead, a successful myeloid-directed therapeutic strategy in established CNS autoimmunity might focus on modulating in the
CNS the differentiation and activation of MCs, rather than ablat-
ing their entry from the periphery (3).

In conclusion, we here propose, for the first time to our knowl-
edge, a treatment able to target CNS-restricted pathogenic mech-
anisms of EAE effector phase. We identify TGF-β2 as the nonre-
dundant secreted mediator of NPC immunomodulation in the
inflamed CNS and as a potent immunomodulatory cytokine able
to reprogram proinflammatory MCs to antiinflammatory/sup-
pressive-like myeloid cells. The reduced amount of MC-derived
polarizing cytokines and proinflammatory mediators in the CNS
limits tissue damage and inhibits the terminal differentiation
of pathogenic GM-CSF-producing Th cells. The reduction of GM-
CSF levels acts synergistically with TGF-β2 in the CNS to impair
the effector properties of MCs, disrupting the positive-feedback
loop sustaining leukocyte recruitment and tissue damage in EAE.
This allows accelerated recovery and significantly less accumu-
lation of irreversible axonal loss in the chronic phase of the disease.

Methods

Mice. C57BL/6 female mice 6–8 weeks old were purchased from
Charles River Italy. Mice with a transgene expressing T cell recep-
tor specific for MOG 35–55 (2D2 mice; The Jackson Laboratory) (89)
were provided by R. Furlan from the San Raffaele Scientific Institute.
B6.Cg-Tg(ithgax-cre)1-Reiz/J mice (The Jackson Laboratory) (61)
expressing Cre recombinase under the CD11c promoter were obtained
from M. Greter (University of Zürich, Zürich, Switzerland). Heterozygous
Tgfbr2tm1Karl/J mice (The Jackson Laboratory) (60) were provided by
M. Falcone from the San Raffaele Scientific Institute. B6;129-
Tgbr2tm1Karl/J mice (The Jackson Laboratory) (60) were provided by
M. Greter (University of Zürich, Zürich, Switzerland). Heterozygous
Tgfbr2tm1Doc/J mice were kindly provided by T. Doetschman (Univer-
sity of Arizona, Tucson, Arizona, USA) (62).

Adult and embryonic mouse NPC culture. Mouse NPCs were
obtained as previously described from dissected subventricular zone of adult (6–
8-week-old) C57BL/6 female mice (NPCs) (14) and from dissected cortex
of E15.5 C57BL/6 embryos (embryonic NPCs [eNPCs]) (90) from Tgfbr2−/−
and Tgfbr2+/− mice. Details are provided in Supplemental Methods.

In vitro differentiation and activation of BMDCs. BMDCs were
prepared from bone marrow cell suspension from flushed tibias and
femurs of naive C57BL/6 mice as previously described (91, 92). At day
6 of in vitro culture, BMDCs were used to investigate CD40L-induced
DC maturation: BMDCs were plated at the concentration of 2 × 105
per milliliter in the presence of recombinant CD40L (10 μg/ml; R&D
Systems) for 48 hours in NCM

**C57BL/6 female mice by s.c. immunization of MOG 35–55
peptide (200 μg per mouse) in incomplete Freund’s adjuvant containing
4 mg/ml of **Mycobacterium tuberculosis**. Pertussis toxin (500 ng)
was injected i.v. at 0 and 2 dpi. The animals were assessed daily for
body weight and clinical symptoms of EAE. Their disease stage was recorded by 3 research-
ers blinded to the treatment with the following scoring system (14): 0;
healthy; 1, limp tail; 1.5, wobbling gait; 2, slight paresis of hind limbs/dif-
ficulty in righting; 2.5, severe paralysis of hind limbs; 3, complete paralysis
of hind limbs; 3.5, initial paresis of forelimbs; 4, tetraparesis; 5, death.

NPC intrathecal transplantation. At the treatment day, 4 days after
clinical onset of EAE, animals were randomized into treatment groups
and anesthetized with i.p. injection of 120–200 μl of 12.5% ketamine

Myelin antigen presentation assay. Fifty thousand BMDCs, matured
with CD40L in vitro (10 μg/ml; R&D Systems) for 48 hours in NCM
or DCM, were cultured in IMDM medium with 10% FCS (Geneneco),
2 mM L-glutamine (BioWhittaker), 100 U/ml penicillin, 100 mg/ml
streptomycin (BioWhittaker), 50 mM 2-mercaptoethanol (Lonza) with
2 × 105 CD4+ T cells isolated by CD4+ T cell MACS beads (Miltenyi Bio-
tec), according to the manufacturer’s procedures, from splenocytes of
MOG35-55-immunized 2D2 mice at 7 dpi in the presence of MOG35-55
peptide (20 μg/ml; Espeikem) for 72 hours. DCS/CD4+ T cells were har-
vested and analyzed for cytokine production by flow cytometry.

Cytokine analysis. Multiplex quantification of cytokines and chemok-
ines in BMDC supernatant and in CNS lysates from EAE mice was per-
formed using a custom 16-plex Lumexin plate (R&D Systems) ac-
cording to the manufacturer’s recommendations. Unsupervised clustering
was performed on normalized, median-centered data and reported as
heatmap using GENE-E software (Broad Institute). For IL-23p19, GM-
CSF, TGF-β2, TNF-α, and IL-6, ELISA was performed (DuoSet ELISA
kit, R&D Systems) according to the manufacturer’s instructions.

Gene expression microarray. Total RNA was isolated from at least
2 × 106 BMDCs unstimulated (IDCs) or stimulated with CD40L in
DCM (mDC) or NCM (mDC-NCM) at 6 and 18 hours of culture using the
RNeasy Mini Kit (Qiagen). RNA quality was confirmed with a
2100 Bioanalyzer (Agilent). cRNA amplification was performed using the
Illumina TotalPrep RNA Amplification Kit (Ambion), and 1.5 μg
of biotin-labeled cRNA of each sample was hybridized on Illumina
MouseWG-6 v2 Expression BeadChip (Illumina). Data were deposited at
ArrayExpress with the accession number E-MTAB-5307. Details on
bioinformatics analysis are provided in Supplemental Methods.

Next-generation sequencing. C57BL/6 mice were immunized and
treated with NPC or PBS at the peak of disease as described above.
Seven days after transplanation, CD45+CD11b+Ly6C−Ly6G−MHC-II+
MCs were FACSort (BD FACSAria III) from hindbrain and spinal
cord as described above. Total RNA from a minimum of 3 × 10^6 up to
5 × 10^6 cells was isolated with Qiagen RNeasy Plus Micro Kit according
to the manufacturer’s instructions. RNA quality was confirmed with a
2100 Bioanalyzer (Agilent) resulting in RNA integrity number ≥8.
Amplification of cDNA from total RNA was performed using the Ova-
tion RNA-Seq system v2 (NuGEN). Then, cDNA was fragmented and
ligated into a sequencing library using Ovation Ultralow Library System
v2 (NuGEN). Libraries were PCR-amplified for 12 cycles and sequenced
on an Illumina NextSeq 500 System with TruSeq reagent kits and soft-
ware. Data were deposited at the NCBI’s Gene Expression Omnibus
(GEO) database with the accession number GSE92395. Details on bio-
informatics analysis are provided in Supplemental Methods.

EAE induction. Chronic EAE was induced in 6– to 8-week-old
C57BL/6 female mice by s.c. immunization of MOG35-55 peptide (200
μg per mouse) in incomplete Freund’s adjuvant containing 4 mg/ml of
Mycobacterium tuberculosis. Pertussis toxin (500 ng) was injected i.v.
at 0 and 2 dpi. The animals were assessed daily for body weight and clinical
symptoms of EAE. Their disease stage was recorded by 3 researchers
blinded to the treatment with the following scoring system (14): 0;
healthy; 1, limp tail; 1.5, wobbling gait; 2, slight paresis of hind limbs/diffi-
culty in righting; 2.5, severe paralysis of hind limbs; 3, complete paralysis
of hind limbs; 3.5, initial paresis of forelimbs; 4, tetraparesis; 5, death.

NPC intrathecal transplantation. At the treatment day, 4 days after
clinical onset of EAE, animals were randomized into treatment groups
and anesthetized with i.p. injection of 120–200 μl of 12.5% ketamine

The Journal of Clinical Investigation

RESEARCH ARTICLE
and 6.25% xylazine in 0.9% saline solution. Animals were fixed on a stereotactic device (David Kopf Instruments). A 10-μl Hamilton syringe was loaded either with 10^6 NPCs, WT eNPCs, or μstereotactic device (David Kopf Instruments). A 10- and 6.25% xylazine in 0.9% saline solution. Animals were fixed on a percoll gradient as previously described (93).

Flow cytometry, intracellular staining, and sorting. Flow cytometry was performed using a CantoII (Becton Dickinson) flow cytometer and analyzed with FlowJo software (Tree Star). FACS sorting was performed on BD FACSAria III (Becton Dickinson) or MoFlo XDP (Beckton Coulter). Fluorochrome-conjugated mAbs specific for mouse MHC class II F-A/1-E (clone M5/114.15.2), CD11b (clone M1/70), CD11c (clone N418), CD45 (clone 30-F11), Ly6C (clone AL-21), Ly6G (clone 1A8), CD4 (clone GK1,5), CD3 (clone 17A2), CD80 (clone 16-10A1), and CD86 (clone GL1) were purchased from either BD Biosciences, eBioscience, or Biolegend.

For intracellular staining of T cell cytokines, cells were stimulated for 6 hours with phorbol 12-myristate 13-acetate (50 ng/ml) and ionomycin (500 ng/ml) in the presence of GolgiPlug (1:1,000; BD Pharmingen). Cells were first stained for surface molecules, fixed and permeabilized with a Cytofix/Cytoperm Plus kit (BD Biosciences), and stained with the following fluorochrome-conjugated mAbs: GM-CSF (clone MP1-22E9), IL-17A (clone TC11-18H10), and IFN-γ (clone XMG1.2) from BD Pharmingen. For analysis of intracellular FoxP3, cell preparations were stained for cell surface markers, then were fixed and made permeable with fixation-permeabilization buffers (eBioscience) and stained with fluorochrome-conjugated anti-FoxP3 mAb (clone FJK-166) from eBioscience.

Dead cells were always excluded using a LIVE/DEAD stain kit (Invitrogen).

Histopathological analyses and immunofluorescence staining. Details are provided in Supplemental Methods.

Statistics. Real-time PCR data, FACS data, EAE score, and histological results are expressed as mean ± SEM. Results were analyzed using the unpaired 2-tailed Student’s t test or 1-way ANOVA with Bonferroni’s post-test except for clinical score, which was assessed by 2-way ANOVA with Bonferroni’s post-test and linear regression. Analyses were performed using Prism v5.0a software (GraphPad). Statistical significance was accepted for P less than or equal to 0.05.

Study approval. All mouse experiments were conducted with approval from the Institutional Animal Committee of the San Raffaele Scientific Institute (IACUC number 568).

Further method descriptions are provided in the Supplemental Methods section.

5. Bailey SL, Schreiner B, McMahon EJ, Miller SD. CNS myeloid DCs presenting endogenous

Author contributions

DD designed and performed experiments, evaluated and interpreted data, and wrote the manuscript. AM performed histology and biochemical experiments, evaluated and interpreted data, and contributed to manuscript preparation. E Brambilla performed experiments. LO, RM, SS, and CF performed microarray bioinformatics analyses. CL helped in transplantation experiments and the microarray experiment. JMG and LO performed RNA-Seq analyses. E Butti prepared the lentiviral constructs. MB performed experiments and edited the manuscript. GC reviewed the manuscript. MG provided transgenic mouse lines, performed the cell sorting experiment, and edited the manuscript. GM supervised and financed the study and edited the manuscript.

Acknowledgments

We thank the Center for Translational Genomics and BioInformatics, San Raffaele Scientific Institute, for RNA sequencing and bioinformatics analysis; Advanced Light and Electron Microscopy BiolImaging Center, San Raffaele Scientific Institute, for the use of equipment; the Center for Microscopy and Image Analysis, University of Zürich, for the use of equipment; the Mouse Histopathology Unit, San Raffaele Scientific Institute, for support and equipment usage for immunohistochemistry; F. Ruffini and A. Finardi, San Raffaele Scientific Institute, for technical assistance; Thomas Doetschman, University of Arizona, for providing the Tgfβ2-knockout strain; V. Tosevski, University of Zürich, for technical help and FACS sorting; and A. Cantore, TIGET San Raffaele Scientific Institute, for Tgfβ2 expressing lentiviral vector production. This work has been in part supported by TargetBrain (EU Framework 7 project HEALTH-F2-2012-279017), by NEUROKINE network (EU Framework 7 ITN project), by BMW Italy Group, by Fondazione Italiana Sclerosi Multiplo (FISM) n the project entitled Progetto Speciale Cellule Staminali, and by CARIPLO Foundation grant no. 2010 1835 to GM and by Ministero della Salute Italiana (Progetto Giovani Ricercatori 58/GR-2011-02348160) to MB.

Address correspondence to: Gianvito Martino, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy. Phone: 390226434958; Email: martino.gianvito@hsr.it.

DD’s present address is: Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland.

CL’s present address is: Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, University Hospital, Lund, Sweden.

RM’s present address is: Scientist-Bioinformatics Division, MedGenome Labs Pvt. Ltd., Narayana Health City, Bommansandra, India.

Haghiakia A, Hohlfeld R, Gold R, Fugger L. Thera-

pleias for multiple sclerosis: translational achieve-

Lee Y, et al. Induction and molecular signa-

Rissone A, et al. Reticular dysgenesis-associated AK2 protects hematopoietic stem and progeni-

Kirilý R, Demény M, Fésüs L. Protein transami-

Ahmed N, et al. The IL-13 ligation and deubiquitin-

ase Cyld act together to regulate Taki and inflam-

Palani S, Maksimov M, Milunieni M, Avvinen K, Jalkanen S, Mait C. Stabilin-1/CLEVER-1, a type 2 macrophage marker, is an adhesion and scavenging molecule on human placental macro-

Martino G, Pluchino S. The therapeutic poten-

De Feo D, Merlini A, Laterza C, Martino G. Neural stem cell transplantation in central nervous sys-

Haghiakia A, Hohlfeld R, Gold R, Fugger L. Thera-

pleias for multiple sclerosis: translational achieve-

Pluchino S, et al. Neurosphere-derived multi-

Martino G, Pluchino S. The therapeutic poten-

De Feo D, Merlini A, Laterza C, Martino G. Neural stem cell transplantation in central nervous sys-

Bacigaluppi M, et al. Delayed post-ischaemic neuroprotection following systemic neural stem cell transplantation involves multiple mecha-

Ottoboni L, De Feo D, Merlini A, Martino G. Commonalities in immune modulation between mesenchymal stem cells (MSCs) and neural stem/precursor cells (NPCs). Immunol Lett. 2015;168(2):228–239.
