SMAD signaling promotes melanoma metastasis independently of phenotype switching

Eylul Tuncer, …, Reinhard Dummer, Lukas Sommer

J Clin Invest. 2019;129(7):2702-2716. https://doi.org/10.1172/JCI94295.

Graphical abstract

[Diagram showing the transition from nonproliferative and noninvasive to proliferative and invasive stages, illustrating the role of SMAD signaling in melanoma metastasis.]

Find the latest version:

https://jci.me/94295/pdf
SMAD signaling promotes melanoma metastasis independently of phenotype switching

Eylul Tuncer,1 Raquel R. Calçada,1 Daniel Zingg,1 Sandra Varum,1 Phil Cheng,1 Sandra N. Freiberger,2 Chu-Xia Deng,3 Ingo Kleiter,4 Mitchell P. Levesque,2 Reinhard Dummer,2 and Lukas Sommer1

1Stem Cell Biology, Institute of Anatomy, University of Zurich, Zurich, Switzerland. 2Department of Dermatology, University Hospital Zurich, Zurich, Switzerland. 3Faculty of Health Sciences, University of Macau, Macau SAR, China. 4Department ofNeurology, Ruhr-University Bochum, Bochum, Germany and Marianne-Strauß-Klinik, Behandlungszentrum Kempfenhausen für Multiple Sklerose Kränke gGmbH, Berg, Germany.

The development of metastatic melanoma is thought to require the dynamic shifting of neoplastic cells between proliferative and invasive phenotypes. Contrary to this conventional “phenotype switching” model, we now show that disease progression can involve malignant melanoma cells simultaneously displaying proliferative and invasive properties. Using a genetic mouse model of melanoma in combination with in vitro analyses of melanoma cell lines, we found that conditional deletion of the downstream signaling molecule Smad4, which abrogates all canonical TGF-β signaling, indeed inhibited both tumor growth and metastasis. Conditional deletion of the inhibitory signaling factor Smad7, however, generated cells that are both highly invasive and proliferative, indicating that invasiveness is compatible with a high proliferation rate. In fact, conditional Smad7 deletion led to sustained melanoma growth and at the same time promoted massive metastasis formation, a result consistent with data indicating that low SMAD7 levels in patient tumors are associated with a poor survival. Our findings reveal that modulation of SMAD7 levels can overcome the need for phenotype switching during tumor progression and may thus represent a therapeutic target in metastatic disease.

Introduction

Despite recent progress in therapy, melanoma has remained by far the deadliest skin cancer, with a 5-year survival rate of only 15% to 20% (1). There is increasing evidence that the aggressiveness of the disease is largely due to an intrinsic plasticity of melanoma cells, allowing the dynamic and reversible switching from a high-proliferative/low-invasive to a low-proliferative/high-invasive state (2–5). This so-called “phenotype switching” has been functionally associated with metastasis formation and therapy resistance (6–8, 5). Furthermore, phenotype switching has been linked to a shift between a transcriptional program governed by high expression of the microphthalmia-associated transcription factor (MITF), a melanoma lineage-survival oncogene, and a transcriptional program associated with high expression of the receptor tyrosine kinase AXL, a marker for resistance to various targeted therapies (9–12). In contrast to proliferative melanoma cells characterized by high MITF expression, MITFlo cells with high-invasive properties show a G1 cell cycle arrest (13). However, while the distinction between MITFhiAXLhi and MITFhiAXLlo phenotypes was used to classify melanomas at the bulk tumor level (14), single-cell RNA-Seq of human melanoma samples has recently led to the identification of a small fraction of double-positive MITFloAXLhi cells. It is conceivable that such double-high cells simply represent a transition stage between the 2 phenotypes, alternatively, they may also have specific tumorigenic properties that are yet to be elucidated (15).

Phenotype switching has also been linked to tumor progression in several epithelial tumors (16, 17). In these cases, a reversible epithelial-to-mesenchymal transition (EMT) promotes invasiveness and stem cell-like features in cancer cells (18), which are driven by a network of embryonic EMT-inducing transcription factors (EMT-TFs) of the SNAIL, TWIST, ZEB, and bHLH/E47 protein families (19). Although melanoma cells are not derived from epithelial cells, they nevertheless show EMT-like processes that can be observed in culture and that have been associated with metastatic spread of the disease (20). In particular, activation of the MAPK pathway by oncogenic BRAF or NRAS promotes a switch from SNAIL2/ZEB2 expression to TWIST1/ZEB1 expression, which enhances invasiveness of melanoma cells (21).

One of the major candidate pathways for driving reversible phenotype switching is SMAD-dependent TGF-β superfamily signaling, which controls EMT in many cancers (22, 23). Sustained expression of EMT-TFs in breast cancer cells is directly regulated by autocrine TGF-β signaling (24). In melanoma, several TGF-β isoforms and NODAL as well as different BMP ligands were shown to be expressed by tumor cells and to promote invasiveness in cell culture or in organotypic human skin cultures (6, 7, 25–27). In support of this, attenuation of TGF-β signaling by overexpression of SMAD7, an inhibitory SMAD protein (28), or by treatment with a small molecule inhibitor reduced bone metastasis formation from cells injected into the cardiovascular system in immunocompromised mice (29, 30).

However, other studies reported that melanoma cells exhibit partial resistance to the antiproliferative activity of TGF-β fam-
family factors (31). Moreover, TGF-β-dependent SMAD signaling and transcription were not restricted to invasive cells, but were also observed in proliferative human melanoma cells (31). Likewise, in human tissue samples, nuclear pSmAD2/3, which mediates canonical TGF-β signaling, was detected at all stages of the disease, including in benign hyperplastic lesions and cutaneous primary melanoma as well as in invasive melanoma (32). Finally, inhibition of SMAD2/3 signaling by SMAD7 overexpression not only affected the invasiveness of melanoma cells, but also reduced their capacity to grow in vitro and upon transplantation into immunocompromised mice (29).

The combined data suggest that SMAD-mediated signaling may exert various functions in melanoma, which are likely influenced by the cellular context and the TGF-β superfamily ligands the tumor cells are exposed to (23). Therefore, in an attempt to mimic the tumor microenvironment with respect to TGF-β-dependent SMAD signaling, we treated melanoma cells with various combinations of TGF-β family factors and addressed the relevance of overall TGF-β/SMAD signaling in melanoma in vivo by means of a genetic mouse model, in which tumors develop spontaneously within an undisturbed 3D environment. Searching for factors modulating the proliferative and invasive capacities of melanoma cells, we identified SMAD7 as a repressor of transcription factors modulating the proliferative and invasive capacities spontaneously within an undisturbed 3D environment. Searching by means of a genetic mouse model, in which tumors develop

β

family factors and addressed the dependent SMAD signaling, we treated melanoma cells with

β

superfamily ligands

β

encased by the cellular context and the TGF-β signaling in melanoma in vivo

β

were unchanged upon

SMAD4

deficiency. Such mice, hereafter termed NrasG12D Ink4a−/− mice, develop hyperplastic lesions marked by ectopic dermal pigmentation and spontaneously form melanomas (36). These were bred with

Tyr::CreERT2

Smad4fl/fl

for the survival of premalignant melanocytic cells (Figure 1, E and F). Consistent with the decreased skin tumor load, Smad4−cKO mice displayed strongly reduced numbers of metastatic lung nodules as compared with control animals (Figure 1I). Consequently, overall as well as melanoma-specific survival was highly increased in Smad4−cKO mice (Figure 1B). As long as Smad4 remained intact (Smad4fl/fl, no TM; or Smad4fl/fl + TM, but in the absence of CreERT2), 76% ± 5% of hair follicles were associated with ectopic pigmentation. Two months after TM injection, the recombination efficiency in such hyperplastic lesions was 66% ± 6%, as assessed by counting β-gal/Pax3 double-positive melanocytic cells. Conditional loss of Smad4 resulted in a marked decrease of hyperplastic lesions, with only 13% ± 3% of hair follicles displaying ectopic dermal pigmentation (Figure 1, C and D). In these mice, melanocytic, Pax3-positive cells were positive for β-gal, suggesting that Smad4 is not essential for the survival of premalignant melanocytic cells (Figure 1, E and F). Importantly, the loss of Smad4 was associated with a significant decrease in the number of β-gal-positive skin melanomas (diameter ≥ 2 mm), which readily emerged after approximately 5 months of age in corresponding control mice (Figure 1, G and H). Consistent with the decreased skin tumor load, Smad4−cKO mice displayed strongly reduced numbers of metastatic lung nodules as compared with control animals (Figure 1I). Consequently, overall as well as melanoma-specific survival was highly increased in Smad4−cKO mice (Figure 1, J and K). These findings reveal a requirement for Smad4 in melanoma formation.

Loss of Smad4 prevents tumorigenesis in a genetic mouse model of melanoma. To investigate the function of TGF-β signaling in melanoma, we used genetically engineered mice that harbor a

Tyr::NrasG12D

transgene in combination with

Cdkn4a (p16ink4a)−/−

deficiency. Such mice, hereafter termed NrasG12D Ink4a−/− mice, develop hyperplastic lesions marked by ectopic dermal pigmentation and spontaneously form melanomas (36). These were bred with

Tyr::CreERT2

Smad4fl/fl

and cKO (Supplemental Figure 1D). Unlike in control animals, TM-induced

NrasG12D

Ink4a−/− offspring, in which TM treatment leads to melanocyte-specific conditional Smad4 ablation in cells marked by expression of β-gal (Figure 1A). TM treatment was done at 1 month of age, that is, before control mice develop detectable melanomas (Figure 1B). As long as Smad4 remained intact (Smad4fl/fl, no TM; or Smad4fl/fl + TM, but in the absence of CreERT2), 76% ± 5% of hair follicles were associated with ectopic pigmentation. Two months after TM injection, the recombination efficiency in such hyperplastic lesions was 66% ± 6%, as assessed by counting β-gal/Pax3 double-positive melanocytic cells. Conditional loss of Smad4 resulted in a marked decrease of hyperplastic lesions, with only 13% ± 3% of hair follicles displaying ectopic dermal pigmentation (Figure 1, C and D). In these mice, melanocytic, Pax3-positive cells were positive for β-gal, suggesting that Smad4 is not essential for the survival of premalignant melanocytic cells (Figure 1, E and F). Importantly, the loss of Smad4 was associated with a significant decrease in the number of β-gal-positive skin melanomas (diameter ≥ 2 mm), which readily emerged after approximately 5 months of age in corresponding control mice (Figure 1, G and H). Consistent with the decreased skin tumor load, Smad4−cKO mice displayed strongly reduced numbers of metastatic lung nodules as compared with control animals (Figure 1I). Consequently, overall as well as melanoma-specific survival was highly increased in Smad4−cKO mice (Figure 1, J and K). These findings reveal a requirement for Smad4 in melanoma formation.

Loss of Smad4 leads to decreased proliferation in established skin tumors. To address the cellular mechanism mediated by Smad4-dependent signaling in established melanoma, we conditionally deleted Smad4 by TM treatment after the appearance of visible tumors (Figure 2A). The phenotype of Smad4 heterozygous animals did not differ from that of Smad4 WT mice. Hence, NrasG12D Ink4a−/−

Tyr::CreERT2

Smad4f/f WT R26R-LSL-LacZ animals were used as control animals for further analyses. High recombination efficiency was apparent at the day of sacrifice (Figure 2B). While apoptosis in recombined melanoma cells was generally low in Smad4−cKO mice and comparable to levels seen in control melanoma tissue, proliferation was significantly reduced in cKO mice, as demonstrated by labeling of β-gal-positive recombined cells with the proliferation marker Ki67 (Figure 2, C-E). Thus, while Smad4 has no apparent effect on proliferation of normal
To clarify the mechanism underlying Smad4-dependent cell cycle control, we determined changes in the expression of several cyclin-dependent protein kinase (CDK) inhibitors after siRNA-mediated Smad4 silencing in melanoma cell lines derived from cells (Supplemental Figure 1, H, I and K), it controls proliferation of melanoma cells, indicating that the combined action of TGF-β superfamily members promotes, rather than counteracts, tumor growth in vivo.

Figure 1. Conditional Smad4 deletion in a genetic mouse model of melanoma prevents tumorigenesis. (A) Schematic of the melanoma mouse model harboring Tyr::NrasG12V, Ink4a−/−, Tyr::CreERT2, floxed Smad4, and R26R Cre-reporter alleles. (B) Experimental strategy used to analyze early loss of Smad4 before appearance of visible melanomas. Control mice either lacked the Tyr::CreERT2 allele or were not treated with TM. (C) Representative H&E staining of trunk skin sections of control and cKO mice at day of sacrifice showing ectopic dermal hyperpigmentation. (D) Quantification of the percentage of hair follicles exhibiting ectopic pigmentation in control (nontreated with TM) and cKO mice (n = 350 hair follicles quantified from 6 different mice). (E) Immunofluorescent staining for Pax3 (control, nontreated with TM) and Pax3+ β-Gal+ cells (cKO) on back skin sections at 6 months to quantify extent of dermal hyperplasia. Open arrowheads indicate Pax3+ cells, white arrowheads Pax3+ β-Gal+ cells. (F) Quantification of the percentage of dermal Pax3+ cells between hair follicles (n = 300 hair follicles from 6 different cKO and control mice). (G) Macroscopic pictures of a control and a Smad4−cKO littermate 6 months after Smad4 ablation. (H) Quantification of recombined primary tumor numbers per control (n = 12) and cKO (n = 11) mice at the day of sacrifice. (I) Quantification of lung macrometastases counts at day of sacrifice using macroscopic pictures and staining on sections (n = 12). (J and K) Kaplan-Meier curves displaying overall and melanoma-specific survival, respectively, of control (n = 12) and Smad4−cKO (n = 17) animals. Vertical bars (K) indicate mice censored because of melanoma-unrelated tumors developing due to constitutive loss of Ink4a. Data are represented as a mean of 3 independent experiments ± SEM (H and I) and ± SD (D and F). ***P < 0.001, unpaired Student’s t test (D, F, H, I), log-rank Mantel-Cox test (J and K). Ctrl, control; HF, hair follicle. Scale bars: 50 μm (E); 500 μm (C).
Figure 2. Loss of Smad4 leads to decreased proliferation in established skin tumors. (A) Experimental strategy used to analyze the deletion of Smad4 in already established skin melanomas. Mice carrying Tyr::NrasG12V Ink4a-/- Tyr::CreERT2 Smad4fl/WT R26R::LacZ or Tyr::NrasG12V Ink4a-/- Tyr::CreERT2 Smad4fl/fl R26R::LacZ were used as controls. (B) Recombination efficiency was calculated by counting percentages of β-gal+Pax3+ cells on primary tumor sections (n = 6, cKO and control; Tyr::NrasG12V Ink4a-/- Tyr::CreERT2 Smad4fl/WT R26R::LacZ treated with TM). (C) Representative immunofluorescent costaining of Ki67 with β-gal on skin melanoma sections 72 hours after conditional deletion of Smad4. White arrowheads indicate Ki67+β-gal+ cells; open arrowheads indicate Ki67–β-gal+ cells. (D) Quantification of Ki67+β-gal+ cells in control (Tyr::NrasG12V Ink4a-/- Tyr::CreERT2 Smad4fl/WT treated with TM) and cKO mice (n = 4). (E) Quantification of apoptotic cells by IHC for activated caspase-3 on skin sections of control and cKO mice (n = 4). (F) Quantitative reverse transcription PCR (RT-qPCR) for expression of multiple G1 cell cycle inhibitors in RIM3 (n = 3) and RIM4 (n = 2) cell lines after siRNA treatment. (G) Western blot performed on nuclear extracts from RIM3 for cell cycle regulator Cdkn1a (p21Waf1), Cdkn2c (p18Ink4c), and Cdkn2a (p16Ink4a) protein expression. (H) Percentage of S phase cells upon SMAD4 knockdown in various human melanoma cell lines. (I) RT-qPCR analysis of the same cell cycle regulators in M010817 human melanoma cell line. Data are represented as the mean ± SEM (D) and ± SD (B, E, F, H, I). **P < 0.01; ***P < 0.001. RT-qPCR results are shown as mean ± SD of 3 biological replicates. For Western blots, representative examples are shown. P values calculated with unpaired Student’s t test (B, D, E, F, H, I). Mel, Melan-A mouse melanocyte line. Scale bar: 50 μm.
anoma cells are expressed by the tumor cells themselves, where they induce their own expression through a positive amplification loop (27, 39–41). Likewise, several TGF-β superfamily members, notably TGF-β2 and BMP7, were concomitantly expressed by tumors derived from NrasQ61K Ink4a−/− mice (Supplemental Figure 3A). Thus, we functionally investigated these factors to identify ligands potentially responsible for melanoma cell proliferation. Cell cycle analysis of 2 cell lines (M010817 and 501Mel) revealed that, among the factors analyzed, BMP7 induced cell cycle progression. The percentages of cells in the S-phase were significantly increased from, respectively, 18 ± 1% and 18% ± 2% in control to 28% ± 3% and 27% ± 2% after exposure to BMP7 (Supplemental Figure 3, B and C). In contrast, the other TGF-β superfamily factors tested suppressed proliferation in human melanoma cells, as previously reported (Supplemental Figure 3, B and C) (6, 27, 42). In agreement with these earlier reports, human melanoma cells exposed to TGF-β2, NODAL, or BMP4 also changed their morphology and exhibited a decreased cell-substrate adherence while BMP7 did not (Supplemental Figure 3D).

To substantiate the above findings, we correlated expression levels of BMP7 and TGFB2 with RNA-Seq data obtained from various proliferative and invasive human melanoma cell lines in culture. Among others, TGFB2 mRNA was robustly expressed in patient-derived cell cultures representing an invasive melanoma cell line from a NrasQ61K Ink4a−/− mouse (RIMs) (37). Of all CDK inhibitors tested, Cdkn2b (p15Ink4b) and Cdkn2c (p18 Ink4c) were significantly upregulated in Smad4-knockdown cells (Figure 2, F and G).

To address whether SMAD4 regulates proliferation also in human melanoma cells, we performed SMAD4 knockdown experiments in various human melanoma cell lines. Of note, in all cell lines tested, the percentages of cells in the S-phase were decreased after siSMAD4 transfection relative to siControl transfection, likely because downregulation of SMAD4 expression counteracted cell cycle progression by repressing G1/S transition (Figure 2H and data not shown). Importantly, in data that were analogous to those obtained with murine melanoma cells, cell cycle arrest induced by SMAD4 inactivation was associated with increased expression of CDK2/Smad4 (p15Ink4a) and Cdkn2c (p18 Ink4c), while the expression of other CDK inhibitors was not altered (Figure 2I and Supplemental Figure 2, A–D). Thus, both in mouse and human melanoma cells, SMAD4-mediated signaling appears to control proliferation by suppressing expression of the respective CDK inhibitors.

Figure 3. Low SMAD7 levels are associated with poor prognosis in human melanoma patients. (A) P values are given for Kaplan-Meier analysis comparing percentage of overall survival of melanoma patient cohorts (n = 454) based on TCGA data for 36 identified transcripts of TGF-β/BMP pathway components. For each gene, low/high expression levels were based on transcript levels found in the bottom and top 50 patients, respectively. Red bars show that lower levels of the transcripts correlate with poor survival, whereas black bars indicate that higher levels of the transcript correlate with poor survival. (B and C) Kaplan–Meier curves comparing overall percentage survival and patient survival rate in stages II, III, and VI with respect to SMAD7 transcript levels based on 454 patients. (D) Significantly changed top 10–ranking GeneGo process networks associated with low/high SMAD7 expression based on MetaCore Database.
ma phenotype (WNT5A hi, AXL hi, ZEB1 hi, SOX9 hi) (Supplemental Figure 3E). In contrast, markers for proliferative melanoma cells (SOX10 hi, MITF hi) correlated with BMP7 expression levels (Supplemental Figure 3E).

Since activation of R-SMADs is required for canonical TGF-β signaling, we investigated whether proliferative versus invasive ligands preferentially signal through specific SMADs. Western blot analysis for pSMAD1/5/8 and pSMAD2/3 (indicators of BMP and TGF-β signaling activity, respectively) verified signaling specificity between different TGF-β superfamily members in human melanoma cells (Supplemental Figure 3, F–H). Remarkably, both BMP4 and BMP7 signaled through SMAD1/5/8 phosphorylation, although BMP4 counteracted proliferation and induced an invasive program when added to melanoma cells, whereas BMP7 increased the percentage of cells in the S phase (Supplemental Figure 3, B–D and H). Thus, the distinct biological activities of TGF-β superfamily members cannot simply be explained by differential usage of the known canonical SMAD signaling pathways.

Loss of SMAD7 is clinically relevant and associated with a MITF hi, AXL hi transcriptional state. Our data show that certain TGF-β superfamily factors expressed in melanoma display opposite effects on cell growth and invasiveness. In an attempt to identify modulators and effectors of TGF-β/SMAD signaling possibly relevant for melanoma progression, we first examined RNA-Seq and clinical data from the skin cutaneous melanoma dataset of The Cancer Genome Atlas (TCGA-SKCM) (43). Survival analysis of TCGA-SKCM showed that, among 36 SMAD signaling components, the inhibitory SMAD protein SMAD7 stood out as the clinically most relevant factor (Figure 3A). In fact, patients with low SMAD7 transcript levels had significantly shorter overall survival as compared with those having high SMAD7 transcripts levels (P = 0.0356) (Figure 3B). The SMAD7 lo and SMAD7 hi patient cohorts did not exhibit obvious differences with respect to clinically relevant BRAF and NRAS mutations (data not shown). The difference in survival was even more evident when comparing among the SMAD7 lo and SMAD7 hi groups those patients that displayed advanced stage disease at the time of analysis (stages II–IV) (P = 0.0125) (Figure 3C). Furthermore, gene ontology (GO) analysis using differential gene signatures of SMAD7 lo and SMAD7 hi patients revealed that categories crucial for melanoma biology, such as regulation of EMT, cell adhesion and migration, and cytoskeletal remodeling as well as upregulation of MITF, were significantly enriched (Figure 3D). Finally, we performed immunofluorescent staining for SMAD7 and the human melanoma marker S100A on 13 different patient samples and quantified the percentage of SMAD7/S100A double-positive cells at superficial (upper layer of epidermis, upper nodules) versus deep sites (deeper nodules and dermis) of primary melanoma samples (Supplemental Figure 4, A and B). While SMAD7 was strongly expressed in superficial regions of melanoma nodules, its expression was significantly weaker or absent in deeper areas and in dermal invasive melanoma cells, suggesting that SMAD7 hi cells may be predominantly associated with the invading front of human melanoma.

To address the physiological role of SMAD7 and its potential association with TGF-β signaling in melanoma cells, we first reduced SMAD7 levels using siRNAs. This led to a significant increase in the levels of both pSMAD2/3 and pSMAD1/5/8, demonstrating the capacity of SMAD7 to inhibit canonical TGF-β signaling in melanoma cells (Supplemental Figure 4, C–E). To characterize the molecular pathways regulated by SMAD7-mediated signaling in melanoma, MO10817 cells treated with siSMAD7 or siControl were subjected to RNA-Seq. Similarly to the TCGA patient analysis (Figure 3D), the GO analysis by ClueGO demonstrated significant enrichments in pathways associated with cell cycle core components and cell-cell adhesion (Figure 4, A and B, Supplemental Figure 4F, and Supplemental Table 1) (44). Specifically, a comprehensive EMT program, including cell-cell adhesion molecules and transcriptional regulators associated earlier with a melanoma invasive gene program (45) was upregulated upon knockdown of SMAD7 (Figure 4, C and D, and Supplemental Table 2). In addition, however, there was also a significant overlap between SMAD7-dependent transcriptional changes and a previously described proliferative melanoma gene signature (45) (Figure 4, C and D, and Supplemental Table 3).

An increase in the expression of EMT regulators has been reported to anticorrelate with an MITF hi gene expression program (14, 46). Moreover, the ratio of MITF/AXL expression has been used to define proliferative versus invasive behaviors of melanoma cells (3, 14). Therefore, we next assessed which of the genes that constitute the published MITF hi and AXL hi programs were differentially expressed in the TCGA-SKCM-based SMAD7 hi patient group and in SMAD7–silenced human melanoma cells, respectively (13). Surprisingly, genes of both the MITF and the AXL program were mostly upregulated in SMAD7 hi patient melanomas or upon loss of SMAD7 in melanoma cells (Figure 4, E–H, Supplemental Table 4). These data suggest that melanoma cells with decreased SMAD7 levels exhibit a MITF hi, AXL hi transcriptional state.

Loss of SMAD7 boosts proinvasive TGF-β2/NODAL signaling in the presence of proproliferative BMP7. According to our gene expression analysis, SMAD7 appears to be implicated in both cell cycle and cell adhesion/EMT control in melanoma. To functionally test this hypothesis, we assayed the effect of siRNA-mediated SMAD7 knockdown in the context of combinatorial TGF-β superfamily signaling. Control experiments with SMAD7 WT cells showed that individual TGF-β2 or NODAL treatment reduced proliferation and cell-substrate adhesiveness of human melanoma cells, which was accompanied by increased invasiveness in a Matrigel Transwell assay and upregulation of an EMT gene expression signature characteristic for invasive melanoma (Figure 5, Supplemental Figure 5, and Supplemental Figure 6). In contrast, BMP7 stimulated proliferation, prevented cell detachment from the substrate, and suppressed the EMT signature even when added together with TGF-β2/NODAL (Figure 5, A–D and G, Supplemental Figure 5, and Supplemental Figure 6). Thus, in the presence of TGF-β2/NODAL, proproliferative BMP7 is dominant and able to override the cytostatic effects of TGF-β2/NODAL in human melanoma cells.

We next performed similar cell cycle analyses and invasion assays in the context of SMAD7 knockdown. Although downregulation of SMAD7 did not alter the cell cycle–promoting effect of BMP7 in human melanoma cells, SMAD7 knockdown in the presence of BMP7 reversed the cell cycle arrest observed after TGF-β2 treatment, hence rendering treatment with TGF-β2 compatible with cell proliferation (Figure 5, A–C, and Supplemental Figure 5, A–C). In contrast to the capacity of BMP7 to override the cytostat-
The effect of TGF-β2, however, BMP7 treatment only partially counteracted the loss-of-adhesion phenotype mediated by TGF-β2/siSMAD7. Indeed, in BMP7/TGF-β2/siSMAD7-treated cultures, there was still a significant increase in the number of cells in suspension as compared with in control cultures (Figure 5D and Supplemental Figure 5D). Consistent with these observations, siSMAD7 treatment of cells concomitantly exposed to TGF-β2 and BMP7 restored an EMT gene expression signature characteristic of invasive melanoma cells (Figure 5G) and increased invasion in Matrigel, thereby reinforcing the proinvasive properties of TGF-β2 (Figure 5, E and F, and Supplemental Figure 5E). Similar results were observed upon combinatorial treatment with NODAL. While BMP7/NODAL-treated cells had a noninvasive phenotype, BMP7/NODAL/siSMAD7-treated cells maintained their proliferative capacity, but displayed reduced cell adhesion and an EMT signature reminiscent of invasive cells (Supplemental Figure 6). Thus, reducing SMAD7 levels does not alter proliferation in vitro, but boosts the proinvasive activity of TGF-β2/NODAL even in the presence of BMP7.

To substantiate that these cells retain the capacity to proliferate and be invasive, we pulsed human melanoma cells with the thymidine analogue EdU after 48 hours of silencing SMAD7 in the presence of BMP7 and TGF-β2 (Figure 6A). Furthermore, we

Figure 4. Low SMAD7 levels are associated with altered cell adhesion and cell cycle programs in human melanoma cell lines. (A) Heatmap showing genes differentially expressed in SMAD7 knockdown and control M010817 cells (3557 genes, row z-score from 3 replicate RNA-Seq experiments). The gene list was generated using a 1.5-fold-change cut-off, and a P value of 0.05. Of these, 1586 were upregulated and 1971 downregulated. (B) GO analysis based on differentially regulated genes upon SMAD7 knockdown. Each individual node shows an enriched GO term (P < 0.05) (Corrected with Bonferroni’s step down procedure). BP, biological process; MF, molecular function; CC, cellular component. A fully labeled version is given in Supplemental Figure 4F. (C) Venn diagram shows the upregulated and downregulated common genes involved in previously described Verfaillie invasive (Inv.) and proliferative (Pro.) program. (D) Heatmap of differentially expressed genes associated with Verfaillie invasive and proliferative programs (proliferative program, n = 165/627, invasive program, n = 203/695) (44) Red, increased; blue, decreased expression. (E and G) Venn diagram showing the overlap between MITF+ and AXL+ gene expression programs derived from patient melanoma samples obtained by single-cell RNA sequencing (16) with genes changed between low/high expressing SMAD7 patients or upon siRNA-mediated knockdown of SMAD7 in M010817. (F and H) Heatmaps indicate differentially expressed MITF and AXL program genes, respectively. For gene lists corresponding to D, F, and H, see Supplemental Tables 3 and 4, respectively.
Deregulated TGF-β/SMAD signaling can alter MITF expression depending on the melanoma cell line (47). Moreover, the ratio of MITF/AXL expression levels has been used to distinguish proliferative and invasive melanoma cells (3, 14). Therefore, we also assessed the percentages of cells expressing high versus low levels of MITF, together with AXL expression, upon combinatorial TGF-β superfamily treatment (Figure 6, B and D). In cultures tested to determine whether proliferative cells expressed ZEB1, which is characteristic of invasive melanoma cells (21). Strikingly, double staining revealed that BMP7/TGF-β2/siSMAD7-treated cultures contained significantly higher numbers of EdU and ZEB1 double-positive cells (23% ± 3%) in comparison with BMP7/TGF-β2–treated (9% ± 2%) or untreated control cultures (4% ± 1%) (Figure 6, B and C).

Deregulated TGF-β/SMAD signaling can alter MITF expression depending on the melanoma cell line (47). Moreover, the ratio of MITF/AXL expression levels has been used to distinguish proliferative and invasive melanoma cells (3, 14). Therefore, we also assessed the percentages of cells expressing high versus low levels of MITF, together with AXL expression, upon combinatorial TGF-β superfamily treatment (Figure 6, B and D). In cultures left
Figure 6. Loss of SMAD7 promotes emergence of proliferative-invasive MITF+AXL+ melanoma cells in vitro. (A) Experimental design used in this study. Proliferative Mo10817 cells were exposed to combinatorial ligand treatment over 3 days. Cells were pulsed with EdU, followed by immunofluorescent staining. White arrowheads mark ZEB1+EdU+ or MITFhiAXL+ cells. Open arrowheads mark ZEB1–EdU+ or MITFhiAXL– cells. (B) Representative IF images. (C) Quantification of single- and double-labeled cells for ZEB1 and EdU (n = 3). (D) Quantification of cells expressing AXL, MITFhi, or both (n = 3). (E) Experimental design and sorting approach for functional analysis of MITFhiAXL+ cells. (F) Quantification of EdU+ proliferative cells expressing MITFhiAXL+ or MITFhiAXL– by FACS (n = 3). (G, I, K) Enrichment for the AXL+EdU+ subpopulation in BMP7/TGF-β2/siSMAD7–treated cells as shown by FACS (n = 3) (yellow quadrant [Q2]) AXL+EdU+, gray quadrant [Q4] AXL+EdU–. (H, J, L) Histograms show the MFI values for MITF expression in AXL+EdU+ versus AXL+EdU– cells. (M) FACs analysis of cells stained with an AXL antibody following TGF-β2 and BMP7 treatment with or without siRNA-mediated SMAD7 knockdown. (N) Matrigel assays of sorted AXL+ and AXL– cells. (O) MITF MFI of AXL+ and AXL– cells following combinatorial treatment. Mean of 3 (C, D, F) or 2 independent experiments (N and O) ± SD. ***P < 0.001, unpaired Student’s t test (C, D, F, N, O). Scale bars: 50 μm.
untreated, exposed to various combinations of TGF-β superfamily factors, or treated with siSMAD7 in the absence of exogenous TGF-β factors, AXL-positive cells were MITF-, and only a minor fraction of cells expressed both AXL and high levels of MITF. In contrast, upon concomitant BMP7/TGF-β2/siSMAD7 treatment, the number of cells double positive for AXL and high MITF was significantly increased to 18% ± 3%.

To determine the biological properties of this MITFhiAXLhi cell subpopulation, we first assessed the rate of EdU incorporation and MITF expression levels in FACS-separated AXL-positive versus AXL-negative cells obtained from different culture conditions (Figure 6E and Supplemental Table 5). In control and siSMad7-treated cultures as well as in the presence of TGF-β and BMP7, the majority of EDU-negative cells did not express AXL (Figure 6, F, G, I). In contrast, cultures with concomitant BMP7/TGF-β2/siSMAD7 treatment showed a significant increase in the percentage of EdU-positive proliferating cells expressing AXL (Figure 6, F and K). Moreover, MITF MFI was higher in AXL/EdU double-positive cells as compared with AXL-positive/EdU-negative cells (Figure 6, H, J, and L, and Supplemental Table 6).
Remarkably, the highest MITF expression levels were detected in AXL/EdU double-positive cells upon silencing of SMAD7 in BMP7/TGF-β2-treated cultures (Figure 6L).

To study the invasive potential of MITFhiAXLhi cells, AXL-positive and AXL-negative cell populations were FACs isolated from human melanoma cell lines exposed to the above-mentioned conditions, followed by a Matrigel Transwell invasion assay (Figure 6, E and M). Under most conditions analyzed, the invasive capacities of AXL-positive and AXL-negative cells were not significantly different. Strikingly, however, the AXL-positive population present in BMP7/TGF-β2/siSMAD7-treated cultures displayed the highest invasiveness among all cell populations analyzed (Figure 6N). Moreover, MITF levels were markedly increased in these AXL-positive cells when compared with the other cell populations (Figure 6O). Thus, reducing SMAD7 levels in the presence of combinatorial BMP7/TGF-β2 treatment leads to the appearance of proliferative MITFhiAXLhi cells with invasive capacity, which possibly contributes to melanoma cell aggressiveness.

Loss of Smad7 in vivo increases the number of cells with both invasive and proliferative features. Our cell culture data revealed the presence of cells that acquired both invasive and proliferative features upon SMAD7 inactivation. To corroborate these findings in an in vivo setting, we used NrasQ61K Ink4a–/– Tyr::CreERT2 R26R::LacZ mice by 4-OHT administration to the skin. TM-mediated Cre-activation at 1 month of age resulted in efficient recombination and depletion of Smad7 protein in Dct-expressing melanoma cells (Supplemental Figure 7, A–C). Importantly, loss of Smad7 led to a substantial increase in the percentage of Dct-positive melanocytic cells coexpressing nuclear pSmad2/3 and pSmad1/5/8, demonstrating activation of both canonical SMAD signaling pathways (Supplemental Figure 7, D and E). Despite signal acti-
vation, however, deletion of Smad7 neither had an overt effect on hyperplastic dermal lesions (data not shown) nor on the number of skin melanomas emerging during disease progression (Figure 7C). Consistent with this, EdU incorporation was not significantly altered in Smad7-cKO tumors as compared with tumors of control mice (34% ± 1% vs. 37% ± 3%) (Figure 7D). Next, we assessed Zeb1 expression in primary tumors of Nras^{Q61K} Ink4a^{−/−} mice after EdU application. Intriguingly, the number of Zeb1/EdU double-positive cells was significantly higher (16% ± 4%) in primary tumors of Smad7-cKO mice when compared with control primary tumors (4% ± 2%) (Figure 7, D and E). In addition, we quantified the numbers of Mitf^{−/−}Axl double-positive cells in skin sections of Smad7-cKO mice. Hyperplastic lesions of Smad7-cKO mice displayed significantly higher numbers of double-positive cells (10% ± 2%) compared with the control (2% ± 1%). Likewise, in Smad7-cKO primary tumors, the number of Mitf^{−/−}Axl double-positive cells reached 27% ± 3%, as compared with 6% ± 1% in control primary tumors (Figure 7, F–H). Thus, inactivation of Smad7 and a concomitant increase in pSmad2/3 and pSmad1/5/8 do not interfere with tumor growth in vivo, but boost the appearance of proliferating cells expressing the invasive marker Zeb1 and of Mitf^{−/−}Axl^{−/−} cells in melanocytic lesions.

Reduced Smad7 expression promotes massive metastatic spread of melanoma in vivo. Although Smad7-cKO mice apparently displayed unaltered tumor initiation and primary tumor growth, their melanoma-free survival was significantly reduced (Figure 8A). In fact, they showed a massive metastatic spread to lung, spleen, and liver, organs that often are devoid of metastases in tumor-bearing control mice (Figure 8B). Pigmented Dct-positive cells in these metastases did not express Smad7, indicating their origin from Smad7-depleted recombined melanoma cells (Figure 8C and Supplemental Figure 7C). Quantification of the metastatic burden in Smad7-cKO mice dis-...
through pSMAD2/3 rather than pSMAD1/5/8. Of note, however, nuclear pSMAD2/3 activity is not only present in TGF-β-treated arrested cells, but also readily detectable in proliferative melanoma cells in vitro and in vivo (6, 31, 32). Furthermore, loss of SMAD7 enhanced both pSMAD1/5/8 and pSMAD2/3 levels in melanoma cell cultures and in our melanoma mouse model, but predominately boosted TGF-β/NODAL–induced invasiveness rather than BMP7-induced proliferation. Thus, the phenotype obtained upon reducing SMAD7 in the context of combinatorial TGF-β superfamily signaling cannot simply be explained by preferential usage of either pSMAD2/3 or pSMAD1/5/8 signaling.

Our finding that BMP7 acts as a proproliferative factor in melanoma even in the presence of TGF-β/pSMAD2/3 signaling is in line with studies in systems other than melanoma, in which BMP7 was reported to override effects of TGF-β. For instance, TGF-β/NODAL and BMP7 counterregulate each other during pathophysiological processes in various organs, such as lung, liver, and kidney (60–62). In breast cancer cells, BMP7 inhibits expression of TGF-β–activated genes associated with EMT, resulting in a significant reduction in TGF-β–triggered cell migration and invasiveness in culture (63), reminiscent of our findings in melanoma. It remains to be shown whether in these cases the balance between integrated BMP7- and TGF-β–dependent signaling outcome can be tipped by modulation of SMAD7 activity in a manner similar to what we observed in melanoma, where an EMT gene expression signature, loss of cell-substrate adhesion in vitro, invasiveness, and metastasis formation in vivo were all promoted upon SMAD7 inactivation in spite of the presence of BMP7 and pSMAD1/5/8 activity.

Our experiments indicate that overall canonical TGF-β/SMAD signaling is a potent promoter of melanoma progression already at early stages of the disease. Unlike depletion of TGFbRIII, which interferes with pSMAD2-mediated signaling and results in hair graying associated with disturbed melanocyte stem cell maintenance (64), eliminating the common downstream signaling mediator SMAD4 did not interfere with normal melanocyte survival and proliferation. These findings suggest that TGFbRIII and Smad4 inactivation differentially affect the finely tuned balance of combined signaling by BMP and TGF-β ligands in the bulge niche (65, 66). Importantly, our data also demonstrate that the inhibitory effect of Smad4 cKO on NrasG12D–driven hyperpigmentation and tumor initiation observed in our mouse melanoma model cannot simply be due to depletion of the melanocytic lineage. Indeed, taking advantage of an inducible system allowing gene manipulation at various stages of tumor progression, we show that Smad4 is required for proliferation in established skin melanoma. This, in turn, reveals the existence of and necessity for proproliferative activators of the Smad pathway, such as BMP7, in the context of melanoma propagation. Since proproliferative BMP7 appears to be dominant over proinvasive factors, the question arises of how a metastatic process is induced in melanoma. One possible mechanism might involve spatiotemporal changes in the composition of the TGF-β superfamily factors to which a tumor cell is exposed, where reducing levels of proproliferative factors relative to proinvasive factor concentrations would promote the development of invasive cells with limited proliferation capacity (8). Whether such phenotype switching indeed occurs in vivo remains to be shown. Our study offers an alternative, but nonexclusive, mechanism of metastasis formation, which involves the reduction of SMAD7 levels in the presence of proproliferative and proinvasive TGF-β superfamily factors. Although it is currently unknown how SMAD7 expression is normally regulated in melanoma, targeting SMAD7 level–dependent emergence of proliferative cells with metastatic capacity might represent a powerful treatment strategy, possibly in combination with drugs interfering with tumor cell proliferation. Indeed, high levels of ZEB1 expression, which we show to be induced by SMAD7 inactivation, have been associated with inherent resistance to MAPKi in BRAFV600E–mutant melanoma (46). Likewise, a shift toward AXLhi expression was observed in melanoma samples resistant to RAF and MEK inhibition (12, 14, 15). Importantly, our study provides a system for investigating how tumor cell–intrinsic changes independent of phenotype switching contribute to malignant progression of melanoma.

Methods

All detailed information on experimental procedures and reagents is provided in Supplemental Tables 8, 9, and 10 and Supplemental Experimental Procedures.

Mice. All implementations were carried out in Ty::NrasG12D Ink4a−/−Tyr::CreERT2 R26R::LacZ animals kept on a mixed genetic background. Animals homozygous for the floxed Smad7 (B6.Cg-Smad7tm1.1Ink) (48) allele or the floxed Smad4 allele (Smad4tm1.1Cxd) (67) were mated with mice heterozygous for the respective floxed allele or alleles and carrying the TM-inducible CreERT2 recombinase under the control of a Tyrosinase promoter (mouse provided by L. Chin, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA). Genotyping was done by PCR on genomic DNA (Qiagen Taq PCR Core Kit 201225) using the primer pairs indicated in Supplemental Table 7. DNA was prepared, and the reactions were carried out as described (48, 67). The presence of the various alleles did not change the expected sex, and Mendelian inheritance ratio was found. Mice were examined frequently and sacrificed at an end point defined by adverse clinical symptoms, such as multiple skin tumors (diameter > 5 mm), weight loss (>15%), or hunched posture.

Data and software availability. All RNA-Seq data were deposited in the NCBI’s Gene Expression Omnibus database (GEO GSE113472).

Statistics. All data were reported either as mean ± SEM or mean ± SD. Results were evaluated using the statistical tests indicated in the figure legends. P values and the number of independent experiments are indicated in figure legends. P < 0.05 was considered statistically significant. Survival curves and metastasis were investigated by Kaplan-Meier analysis (Unistat) of H-score, which were compared by univariate and multivariate Cox regression (Stata). Quantifications of immunofluorescent staining were done on sections of at least 3 different mice. For each animal, 3 different sections and, for each section, 300–500 label-positive cells were counted.

Study approval. Primary human materials were provided by the Tumor Biopsy and the Live Cell Biobanks of the University Research Priority Program (URRP) Translational Cancer Research (Mitchell P. Levesque, University Hospital Zurich). Biobanking of surplus, human material from consenting melanoma patients was performed according to the Declaration of Helsinki on Human Rights and was approved by the IRB of Zurich (EK.647/800). All research on surplus human material was conducted under IRB approval KKE-Zh.Nr 2014-0425. To ensure patient confidentiality, no information on age, gender, or
ethnicity was provided to the investigators of this study. All studies involving mice were approved by the veterinary authorities of the Canton of Zurich, Switzerland, and were performed in accordance with Swiss law regarding welfare and treatment of animals.

Author contributions
LS, DZ, ET, and RC conceived the project and designed the research. ET, PC, RRC, and SNF performed experiments and analyzed data. DZ, CXD, SV, MPL, RD, and IK provided analytic tools and intellectual contributions to the design of experiments and interpretation of data. LS and ET wrote the original manuscript. All authors discussed the results and commented on the manuscript.

Acknowledgments
We thank Heinzi Arnheiter for critical reading of the manuscript; Claudia Meyer and Astrid Rhyner for assistance in histology; Raphaël Bossart and Jessica Häusel for help with genotyping; the Center for Microscopy and Image Analysis at the University of Zurich for help with slide scanning; and the center of flow cytometry for help with sorting. We thank F. Beermann, L. Chin, and M. Serrano for providing Tyr::NrasG12S, Ink4+/-, Tyr::CreERT2, and R26R-LSL-LacZ mice. We acknowledge the advice by the Cancer Biology PhD Program of the University of Zurich. This work was supported by the Swiss National Science Foundation (31003A_169859), the Swiss Cancer League (KFS-3682-08-2015), and the University Research Priority Program (URPP) Translational Cancer Research.

Address correspondence to: Lukas Sommer, Stem Cell Biology, Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, CH–8057 Zurich, Switzerland. Phone: 41.44.63.55443; Email: lukas.sommer@anatomy.uzh.ch.

