Accessory heterozygous mutations in cone photoreceptor CNGA3 exacerbate CNG channel–associated retinopathy

Markus Burkard, …, Bernd Wissinger, Peter Ruth

Mutations in CNGA3 and CNGB3, the genes encoding the subunits of the tetrameric cone photoreceptor cyclic nucleotide–gated ion channel, cause achromatopsia, a congenital retinal disorder characterized by loss of cone function. However, a small number of patients carrying the CNGB3/c.1208G>A;p.R403Q mutation present with a variable retinal phenotype ranging from complete and incomplete achromatopsia to moderate cone dysfunction or progressive cone dystrophy. By exploring a large patient cohort and published cases, we identified 16 unrelated individuals who were homozygous or (compound-)heterozygous for the CNGB3/c.1208G>A;p.R403Q mutation. In-depth genetic and clinical analysis revealed a co-occurrence of a mutant CNGA3 allele in a high proportion of these patients (10 of 16), likely contributing to the disease phenotype. To verify these findings, we generated a Cngb3R403Q/R403Q mouse model, which was crossbred with Cnga3-deficient (Cnga3−/−) mice to obtain triallelic Cnga3+/− Cngb3R403Q/R403Q mutants. As in human subjects, there was a striking genotype-phenotype correlation, since the presence of 1 Cnga3-null allele exacerbated the cone dystrophy phenotype in Cngb3R403Q/R403Q mice. These findings strongly suggest a digenic and triallelic inheritance pattern in a subset of patients with achromatopsia/severe cone dystrophy linked to the CNGB3/p.R403Q mutation, with important implications for diagnosis, prognosis, and genetic counseling.

Find the latest version:

http://jci.me/96098/pdf
Accessory heterozygous mutations in cone photoreceptor CNGA3 exacerbate CNG channel–associated retinopathy

Markus Burckard,1,2 Susanne Kohl,1 Timm Krätzig,1 Naoyuki Tanimoto,4 Christina Brennenstuhl,1 Anne E. Bausch,1 Katrin Junger,1 Peggy Reuter,1 Vithiyanjali Sothilingam,4 Susanne C. Beck,4 Gesine Huber,4 Xi-Qin Ding,1 Anja K. Mayer,3 Britta Baumann,3 Nicole Weisschuh,3 Ditta Zobor,4 Gesa-Astrid Hahn,3 Ulrich Kellner,7 Sascha Venturelli,2 Elvir Becirovic,8 Peter Charbel Issa,9 Peggy Reuter,3 Vithiyanjali Sothilingam,4 Susanne C. Beck,4 Gesine Huber,4 Xi-Qin Ding,1 Anja K. Mayer,3 Britta Baumann,3

1Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy; 2Department of Vegetative and Clinical Physiology; 3Molecular Genetics Laboratory, Institute for Ophthalmic Research, and 4Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany. 5Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA. 6Institute of Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany. 7Rare Retinal Disease Center, Augenzentrum Siegburg, MVZ ADTC Siegburg GmbH, Siegburg, Germany. 8Center for Integrated Protein Science Munich GIPSM and Department of Pharmacy–Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany. 9Oxford Eye Hospital, OUH NHS Foundation Trust and the Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom. 10McGill Ocular Genetics Centre, McGill University Health Centre, Montreal, Quebec, Canada. 11University Eye Hospital Munich, Munich, Germany. 12Kellogg Eye Center, Ann Arbor, Michigan, USA. 13The National Eye Institute, Bethesda, Maryland, USA. 14Casey Eye Institute, Department of Ophthalmogenetics, Portland, Oregon, USA. 15INSERM US83, Institut des Neurosciences, Montpellier, France.

Mutations in CNGA3 and CNGB3, the genes encoding the subunits of the tetrameric cone photoreceptor cyclic nucleotide–gated ion channel, cause achromatopsia, a congenital retinal disorder characterized by loss of cone function. However, a small number of patients carrying the CNGB3/c.1208G>A:p.R403Q mutation present with a variable retinal phenotype ranging from complete and incomplete achromatopsia to moderate cone dysfunction or progressive cone dystrophy. By exploring a large patient cohort and published cases, we identified 16 unrelated individuals who were homozygous or (compound-) heterozygous for the CNGB3/c.1208G>A:p.R403Q mutation. In-depth genetic and clinical analysis revealed a co-occurrence of a mutant CNGA3 allele in a high proportion of these patients (10 of 16), likely contributing to the disease phenotype. To verify these findings, we generated a Cngb3R403Q/R403Q mouse model, which was crossed with Cnga3-deficient (Cnga3−/−) mice to obtain triallelic Cnga3−/−; Cngb3R403Q/R403Q mutants. As in human subjects, there was a striking genotype-phenotype correlation, since the presence of 1 Cnga3-null allele exacerbated the cone dystrophy phenotype in Cngb3R403Q/R403Q mice. These findings strongly suggest a digenic and triallelic inheritance pattern in a subset of patients with achromatopsia/severe cone dystrophy linked to the CNGB3/p.R403Q mutation, with important implications for diagnosis, prognosis, and genetic counseling.

Introduction

Mutations in 6 genes (CNGA3, CNGB3, GNAT2, PDE6C, PDE6H, and ATF6) are so far known to cause autosomal recessive achromatopsia (ACHM) (1–8), a rare congenital disorder characterized by poor visual acuity, reduced or complete lack of color discrimination, photophobia, and nystagmus. Patients have small central scotoma and eccentric fixation. Most present with the complete form of the disease, few with incomplete ACHM in which symptoms are milder. ACHM patients lack or have strongly diminished cone photoreceptor function from birth. In addition, variable progressive foveomacular degeneration is observed in most patients upon optical coherence tomography (OCT) (9–17). Biallelic mutations in either CNGA3 or CNGB3 encoding the ion-conducting and the modulatory subunits of the cone-specific cyclic nucleotide–gated (CNG) ion channel, respectively, are by far the most common cause of ACHM and account for the vast majority of cases in the patient population (18–20). CNG channels are key components of the phototransduction cascade and mediate membrane hyperpolarization upon a light-triggered decrease in the level of the channel’s ligand cGMP (21). Native cone CNG channels are composed of 3 CNGA3 subunits and 1 CNGB3 subunit (22). In heterologous systems, the sole expression of CNGA3 but not of CNGB3 yields functional channels, defining CNGB3 as an accessory subunit. However, heteromeric A3/B3 channels differ from homomeric A3 channels in some important aspects, such as ligand selectivity and gating properties (23). Moreover, formation of heteromeric channels seems to be important for maintaining protein stability and effectively targeting CNG channels to the outer segment of photoreceptors (24, 25).

The majority of reported mutations in CNGB3 are nonsense, splicing, or frameshift mutations that most likely represent null
alleles (2, 3, 12, 19, 26) and are associated with typical clinical findings of ACHM or severe cone dystrophy, which differs from ACHM in its progressive course and some minute residual cone function, depending on the stage of the disease (12). A notable exception is the c.1208G>A missense mutation, which causes an arginine-to-glutamine substitution in the evolutionarily conserved pore helix of CNGB3 at amino acid position 403 (p.Arg403Gln). This substitution was reported in patients presenting with a rather variable retinal phenotype described as progressive macular dystrophy, macular degeneration, or cone dystrophy (12, 26, 27). The clinical expression in these patients is distinct from that in patients with ACHM, since visual acuity, photopic electroretinographic responses, and color vision are much less impaired. Bright and coworkers found that coexpression of WT CNGA3 and mutant CNGB3/p.R403Q in Xenopus oocytes resulted in formation of heterotetrameric CNG channels with normal surface expression, but increased apparent ligand sensitivity and increased outward rectification (23, 28).

Targeted knockout mice are available for Cnga3 and CNgb3 as models for human ACHM, and to investigate and dissect the function of both subunits (29, 30). Cnga3-KO mice show a visual phenotype that reproduces the complete loss of cone function in human ACHM. Moreover, as in ACHM patients, perturbed morphology of cone somata, cone opsin mislocalization, and cGMP accumulation in the cone outer segments were observed in these animals (31, 32). Interestingly, the disease phenotype in Cngb3-KO mice is attenuated compared with that in human patients bearing CNGB3 mutations. The latter present with a typical ACHM phenotype, while Cngb3-knockout mice show robust residual cone function with a photopic electroretinographic response amplitude of approximately 50% of that observed in WT littermates at postnatal day 15 that declines to 20% at the age of 12 months (33). The reduced function is accompanied by a slowly progressive loss of cones, with cone densities that drop to about 50% by 12 months of age (30, 33).

Biallelic mutations in one of the known ACHM genes explain the disease in the vast majority of patients. However, there is a small fraction of patients with unexplained variable clinical phenotypes, suggesting the existence of more complex genetic scenarios.

Here we report strong evidence for a digenic triallelic cause of ACHM involving biallelic CNGB3 mutations combined with an additional monallelic CNGA3 mutation that explains the variable clinical phenotype in patients carrying the CNGB3/p.R403Q mutation. We corroborated these findings by modeling this digenic triallelic gene splicing assay in human embryonic kidney 293T (HEK293T) (23) and in human embryonic retina (26). The R290H mutant gave rise to a functional CNG channel interacting with the CNGB3 subunit. However, the apparent cGMP-binding domain. In addition, 2 novel CNGA3 variants, the missense substitution p.R290H and a putative splicing mutation, c.-37-1G>C, were identified in families CHRO852 and MDS49, respectively (Figure 1). When expressed heterologously, the CNGA3/p.R290H mutant gave rise to a functional CNG channel interacting with the CNGB3 subunit. However, the apparent cGMP affinity of CNGA3/p.R290H was 3-fold lower compared with that of WT CNGA3 channels, suggesting that the pathology of CNGA3/p.R290H is related to a lower affinity to its ligand (Supplemental Figure 1). Finally, we tested the c.-37-1G>C variant using a minigene splicing assay in human embryonic kidney 293T (HEK293T) and murine cone photoreceptor-like 661W cells. We found that the c.-37-1G>C variant induces the use of an alternative splice acceptor, resulting in the loss of the first 75 bp of exon 1, including the start codon ATG (Supplemental Figure 2). Therefore, protein translation of the misspliced transcript is likely abolished, unless an alternative start codon in exon 2 is used (e.g., M52). However, we also observed small amounts of correctly spliced transcript in the minigene assay, suggesting that small amounts of WT CNGA3 protein can be translated from this mutant allele. The hypomorphic nature of this mutant is compatible with the mild phenotype in the patient (MDS49-II:1). According to their genotypes, patients carrying the CNGB3/p.R403Q mutation were divided into 3 groups, as follows (see Supplemental Table 1 for a compilation of patients’ clinical data and related genotypes; and Supplemental Figure 3 for retinal imaging data of selected patients).
Table 1. **CNGB3** and **CNGA3** genotypes and clinical diagnosis of patients carrying the **CNGB3/p.R403Q** mutation (bold)

<table>
<thead>
<tr>
<th>Patient</th>
<th>CNGB3</th>
<th>CNGA3</th>
<th>Clinical diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHRO759-II:1</td>
<td>T383Ifs*13</td>
<td>R403Q</td>
<td>+</td>
</tr>
<tr>
<td>CHRO360-II:1</td>
<td>T383Ifs*13</td>
<td>R403Q</td>
<td>+</td>
</tr>
<tr>
<td>CHRO374-II:1</td>
<td>Q38</td>
<td>R403Q</td>
<td>+</td>
</tr>
<tr>
<td>CHRO344-II:1</td>
<td>T383Ifs*13</td>
<td>R403Q</td>
<td>+</td>
</tr>
<tr>
<td>Family V:1 (27)</td>
<td>T383Ifs*13</td>
<td>R403Q</td>
<td>NA</td>
</tr>
<tr>
<td>215-011 (26)</td>
<td>L595F</td>
<td>R403Q</td>
<td>+</td>
</tr>
<tr>
<td>CHRO208-II:1</td>
<td>R403Q</td>
<td>+</td>
<td>Macular dystrophy</td>
</tr>
<tr>
<td>CHRO852-II:1</td>
<td>T383Ifs*13</td>
<td>R403Q</td>
<td>+</td>
</tr>
<tr>
<td>MDS49-II:1</td>
<td>T383Ifs*13</td>
<td>R403Q</td>
<td>+</td>
</tr>
<tr>
<td>CHRO251-II:1</td>
<td>T383Ifs*13</td>
<td>R403Q</td>
<td>+</td>
</tr>
<tr>
<td>CHRO979-II:2</td>
<td>Splice defect</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHRO7-II:1</td>
<td>T383Ifs*13</td>
<td>R403Q</td>
<td>+</td>
</tr>
<tr>
<td>Family V:1</td>
<td>T383Ifs*13</td>
<td>R403Q</td>
<td>NA</td>
</tr>
</tbody>
</table>

Group 1: compound heterozygosity for **CNGB3/p.R403Q** and a protein truncation mutation in **CNGB3** and no mutation in **CNGA3**.

Four of the 6 patients in this group (CHRO759-II:1, CHRO360-II:1, CHRO344-II:1, family V:1) actually had the same genotype, p.[R403Q]_[T383Ifs*13], but were clinically examined at different ages (range, 5.5–56 years), providing quasi-longitudinal genotypic data. Clinical diagnosis ranged from macular and cone dystrophy to ACHM, and in one case progression of symptoms was described (27). Patient CHRO374-II:1 in this group had a different genotype, p.[Q38];p.[R403Q,Qp,G558V], including a complex allele with p.R403Q and p.G558V mutations in cis and the nonsense mutation in trans. Patient 215-011 carries 2 heterozygous mutations, c.[1208G>A];c.1783C>T and p.[R403Q];L595F, yet segregation analysis was not done to assure compound heterozygosity. Nishiguchi and coworkers describe this case with a clinical diagnosis of macular dystrophy (26).

Group 2: homozygosity for the **CNGB3/p.R403Q** mutation and an additional heterozygous **CNGA3** mutation. Patient MD549-II:1 had late-onset macular dystrophy, with slightly reduced visual acuity and reduced central responses in the multifocal electroneptinogram (ERG) but normal full-field photopic ERG responses at 48 years of age. Compared with that of the other patients in this genotype group, this mild phenotype is probably due to the hypomorphic nature of the **CNGA3** mutation (i.e., leaky splice defect). Two patients in this group (CHRO852-II:1, CHRO208-II:1) presented with typical features of ACHM (visual acuity ≤0.2, nonrecordable photopic ERG responses, photophobia, and nystagmus) but with some residual color vision, justifying a clinical diagnosis of oligocone trichromacy and incomplete ACHM, respectively. Patient CD228-II:1 was diagnosed with cone dystrophy, highlighting that the additional **CNGA3** allele plays an important role for the resulting phenotype. Progression was reported in 2 cases.

Group 3: compound heterozygosity for **CNGB3/p.R403Q** and a protein truncation or splicing mutation in **CNGB3**, and an additional **heterozygous **CNGA3** mutation**. Four of the 5 patients in this group (CHRO7-II:1, CHRO1050-II:1, CHRO979-II:2, and CHRO16-II:1) presented with clinical findings typical for complete ACHM, and 2 of the oldest patients (CHRO251-II:1 and CHRO979-II:2, aged 53 and 57, respectively) showed pronounced foveal or macular lesions and retinal pigment irregularities. The fifth patient in this group (CHRO1050-II:1, 17 years old) had photophobia, nystagmus, and a nonrecordable photopic ERG response in common with the other patients in this group. Nevertheless, color vision and visual acuity (oculus dexter [OD], 0.4; oculus sinister [OS], 0.25) were impaired to a lesser extent in this patient.

Notably, none of the double-heterozygous family members (i.e., parents) of group 2 and group 3 patients who were identified during the segregation analysis reported visual impairment (Figure 1). However, detailed phenotyping was not performed in these double-heterozygous individuals.

Collectively, these findings suggest that **CNGB3/p.R403Q** is a hypomorphic mutation that possibly causes a relatively mild and late-onset or a subclinical retinal disease in the homozygous state. Furthermore, these data show a correlation of disease severity with the actual **CNGB3** and **CNGA3** genotype, and provide evidence for a novel digenic triallelic cause of ACHM involving biallelic **CNGB3** and **CNGA3** mutations.
at 4–5 weeks and 7–12 months. At young ages, Cngb3R403Q/R403Q mice did not show substantially altered ERG responses, although a tendency toward reduced amplitudes under light-adapted conditions was observed in mixed-background animals (Figure 2A). However, at the age of 7–12 months, Cngb3R403Q/R403Q mutants on the 129/Sv and to a lesser extent on the 129/Sv × C57BL/6N background displayed reduced photopic single-flash ERG responses to 60% of the WT controls. Both mouse lines were established on 2 different genetic backgrounds (129/Sv × C57BL/6N and 129/Sv) to evaluate the effects of inbred and hybrid backgrounds on the expression of the mutants’ phenotype.

We first analyzed retinal photoreceptor function by means of ERG recordings in Cngb3R403Q mice and litter-matched controls at 4–5 weeks and 7–12 months. At young ages, Cngb3R403Q/R403Q mice did not show substantially altered ERG responses, although a tendency toward reduced amplitudes under light-adapted conditions was observed in mixed-background animals (Figure 2A). However, at the age of 7–12 months, Cngb3R403Q/R403Q mutants on the 129/Sv and to a lesser extent on the 129/Sv × C57BL/6N background displayed reduced photopic single-flash ERG responses to 60% of the WT controls.

Figure 1. Pedigrees of patients and segregation of CNGB3 and CNGA3 disease alleles. Pedigrees are subdivided into 3 groups according to genotypes and correlated disease severity. Group 1: Compound heterozygosity for CNGB3/p.R403Q and a protein truncation mutation in CNGA3 and no mutation in CNGA3. Group 2: Homozygosity for the CNGB3/c.1208G>A;p.R403Q mutation and an additional heterozygous CNGA3 mutation. Group 3: Compound heterozygosity for CNGB3/c.1208G>A;p.R403Q and a protein truncation or splicing mutation in CNGA3 and an additional heterozygous CNGA3 mutation. The genotypes for CNGB3 and CNGA3 of all tested individuals are provided. The presence of 2 mutant CNGB3 alleles with homozygosity for the CNGB3/c.1208G>A;p.R403Q mutation was confirmed by qRT-PCR. Notably, siblings and parents carrying single heterozygous mutations in both CNGB3 and CNGA3 (CHRO208-I:2; CHRO251-I:1; CHRO979-III:1, and CHRO1050-I:1) are unaffected. The different mutations (M1-M3) in each family are defined above the respective pedigree. M1 was always selected for the p.R403Q mutation.

triallelic Cnga3+/–; Cngb3p.R403Q/R403Q animals to model the condition in triallelic mutant patients (Figure 1). Both mouse lines were established on 2 different genetic backgrounds (129/Sv × C57BL/6N and 129/Sv) to evaluate the effects of inbred and hybrid backgrounds on the expression of the mutants’ phenotype.

We first analyzed retinal photoreceptor function by means of ERG recordings in Cngb3p.R403Q/R403Q mice and litter-matched controls at 4–5 weeks and 7–12 months. At young ages, Cngb3p.R403Q/R403Q mice did not show substantially altered ERG responses, although a tendency toward reduced amplitudes under light-adapted conditions was observed in mixed-background animals (Figure 2A). However, at the age of 7–12 months, Cngb3p.R403Q/R403Q mutants on the 129/Sv and to a lesser extent on the 129/Sv × C57BL/6N background displayed reduced photopic single-flash ERG responses to 60% of the WT con-
Cngb3^{R403Q/R403Q} and Cnga3^{+/–} mutants. (A) Results of the ERG recordings of WT (black) and Cngb3^{R403Q/R403Q} mice (red) at 1 month (M1) and 7–12 months (M7–12) of age (n = 3–5). Furthermore, mice were tested on 2 genetic backgrounds (129/Sv x C57BL/6N [n = 4] and 129/Sv [n = 3]). (B) Results of the ERG recordings of Cnga3^{−/−} (black) and Cnga3^{+/–}Cngb3^{R403Q/R403Q} mice (red) (n = 3). ERG data are presented as box-and-whisker plots (boxes: 25%–75% quantile range, whiskers: 5% and 95% quantiles, asterisks: median).

The abnormal ERG of the 7- to 12-month-old mutants prompted us to analyze CNG channel protein abundances and to seek evidence of emerging degenerative processes in photoreceptors. For this purpose, retinas of 7- to 12-month-old mice used in the ERG recordings were investigated by immunohistochemistry (Figure 3). Immunostaining with an anti-CNGA3 antibody and anti-CNGB3 antiserum revealed almost complete absence of CNGB3 was observed in Cnga3^{−/−} mutants. These results suggest that Cngb3^{R403Q/R403Q} markedly reduces the number of functional CNG channels in the cone outer segment. Cngb3 transcript, however, remained unchanged in Cngb3^{R403Q/R403Q} mutants as well as in Cnga3^{−/−}Cngb3^{R403Q/R403Q} mutants (Supplemental Figure 8, B and C).

The decline in cone arrestin expression has been suggested as an early marker of cone degeneration (36). Most strikingly, immunolabeling with an anti-cGMP antibody revealed that intracellular cGMP levels were profoundly elevated and could be detected by immunolabeling with an anti-cGMP antibody (32) in the retina of Cnga3^{−/−}Cngb3^{R403Q/R403Q} and, to a lesser extent, Cngb3^{R403Q/R403Q} animals. Accumulated cGMP was localized in photoreceptor outer segments and the outer nuclear layer as well as the outer plexiform layer, representing cone photoreceptor axon terminals and somata, respectively. In contrast, the anti-cGMP antibody failed to detect the low cGMP levels in the retina of Cngb3^{−/−} and Cngb3^{+/–}Cngb3^{R403Q/R403Q} control animals. cGMP accumulation has been observed in homozygous Cnga3^{−/−} and Cngb3^{−/−} mice.
mice (37, 38), and is a common finding in many models of retinal degeneration (39), reflecting an advanced state of metabolic dysrregulation in photoreceptors prior to cell death (37). Taken together, the results indicate that triallelic Cnga3+/– Cngb3R403Q/R403Q mice present with an exacerbated disease phenotype when compared with diallelic Cngb3 R403Q/R403Q mutants, supporting the findings in patients carrying the CNGB3/p.R403Q mutation with or without an additional CNGA3-mutant allele.

Discussion

Biallelic mutations in CNGB3 cause autosomal recessive ACHM or a clinically closely related form of early-onset severe cone dystrophy that differs from the former in having some residual minor cone function that is progressively lost (12, 19, 26). A notable exception are phenotypes associated with the CNGB3/c.1208G>A;p.R403Q mutation, which has been reported in patients who present with highly variable clinical findings ranging from mild macu-
lar dystrophy to severe cone dystrophy with near complete loss of cone function (12, 26, 27).

Our in-depth exploration of a large cohort of patients with ACHM, cone dystrophy, and macular dystrophy and an extensive literature search corroborated these individual reports (Supplemental Table 1). Moreover, our compiled data provide an explanatory model for this phenotypic variability based on the allelic composition of CNGB3 mutations and the presence or absence of additional heterozygous mutations in CNGA3 that constitute digenic triallelic inheritance of the observed phenotypes. In fact, we can differentiate 3 distinct groups of patients (groups 1-3; Table 1 and Supplemental Table 1) who show a tendency toward phenotypic outcome and severity.

Our study provides compelling evidence that the CNGB3/p.R403Q variant is in fact a hypomorphic mutation. First, all subjects with biallelic mutations in CNGB3 involving p.R403Q either in homozygous or compound heterozygous state in trans with a known pathogenic CNGB3 mutation exhibit a retinal disease phenotype. In none of these cases, we found biallelic CNGB3 mutations which could explain the disease irrespective of the CNGB3/p.R403Q variant. Second, the arginine residue at amino acid position 403 in CNGB3 is evolutionarily fully conserved in vertebrates, and common prediction algorithms classify the p.R403Q substitution as deleterious, damaging, or disease-causing (Supplemental Table 2). Third, heterologous expression of the human CNGB3/p.R403Q variant or mutants of the homologous residue in bovine CNGB1 — together with the respective CNAG subunit — showed significantly elevated cGMP affinity and strong outward rectification behavior (28, 40). Fourth, reduced cone function (Figure 2 and Supplemental Figure 6) and strongly decreased CNG channel expression in the Cngb3R403Q/R403Q mouse mutant (Figure 3 and Supplemental Figure 8) demonstrate the mild but deleterious effect of the CNGB3/p.R403Q mutation in vivo that is further aggravated by a heterozygous mutation in CNGA3, modeled by the crossing of the Cngb3R403Q/R403Q and Cnga3-KO mice.

The macular dystrophy in patients MDS49-II:1 and 215-011 and variable other phenotypes in human patients, and the intermediate phenotype in the Cngb3R403Q/R403Q mouse mutant terms of photopic ERG responses, strongly suggests that the CNGB3/p.R403Q mutation represents a hypomorphic CNGB3 allele with residual cone function and a slowly progressive deterioration of cone function and integrity. Consistent with these findings, we generally observed more severe clinical phenotypes but still some minor residual cone function in patients compound heterozygous for the CNGB3/p.R403Q mutation and with a truncating mutation in CNGB3 (group 1 patients; Table 1 and Supplemental Table 1).

Intriguingly, we documented a large proportion of CNGB3/p.R403Q-positive patients (10 of 16) carrying an additional heterozygous CNGA3 mutation (Supplemental Table 1). These CNGA3 mutations are truly pathogenic (Supplemental Table 2), since they (i) constitute a null allele (p.W440*), (ii) have been recurrently reported in ACHM patients (p.R223W, p.E228K, p.R277C, p.R427C, p.R436W) (18, 41–44), or (iii) have been functionally validated in heterologous expression systems in prior studies (p.R223W, p.E228K, p.R277C, p.M406T, p.R427C, p.R436W, p.E593K) (34, 35) or in this work (p.R290H; Supplemental Figure 1). The probability of the simultaneous presence of a heterozygous CNGA3 mutation just by chance in 10 of 16 CNGB3/p.R403Q-positive subjects is exceedingly low given the estimated carrier frequency of 0.0063 for CNGA3 mutations among populations of European descent. Moreover, there was a tendency toward a milder clinical phenotype of incomplete ACHM with minimal cone function observed in the group 2 patients (homozygous for CNGB3/p.R403Q and heterozygous for additional CNGA3 mutations) (Supplemental Table 1).

To further substantiate this digenic triallelic nature of the disease in group 2 and group 3 patients, we specifically generated a CNGB3/p.R403Q-knockin mouse mutant (Cngag3+/− Cngb3R403Q/R403Q) and modeled the triallelic state through crossbreeding with the well-characterized Cnga3−/− mouse line (Cnga3+/− Cngb3R403Q/R403Q). Importantly, most mouse ACHM models closely recapitulate the principal defect in terms of cone function and cone photoreceptor survival — e.g., Cnga3+/− and cpfl5(Cnga3) (29, 45), Cngb3+/− (30), cfl3(Gnat2) (46), and cpfl1(Pde6c) (5).

Cone function in 4-week-old Cngag3+/− Cngb3R403Q/R403Q and Cnga3+/− Cngb3R403Q/R403Q mutants was only slightly reduced, as revealed by photopic flash and flicker ERG, whereas both CNG subunits were hardly detectable at the protein level (Figure 3 and Supplemental Figure 8A). Cngb3+/− mice display early cone function loss with slow progression (30, 33). Cnga3+/− Cngb3R403Q/R403Q mutants, however, displayed late-onset cone function loss, with milder cone degeneration. The moderate reduction in cone function in Cnga3+/− Cngb3R403Q/R403Q mice is comparable to a mild to subclinical phenotype, while the pronounced functional decline at age 7–12 months of the triallelic Cnga3−/− Cngb3R403Q/R403Q mutants reflects the phenotype of patient groups 2 and 3. Obviously, an additional heterozygous CNGA3 mutation exacerbates the Cngb3R403Q/R403Q disease phenotype in both humans and mice. Of note, in vivo retinal imaging and retinal histopathology revealed no gross retinal abnormalities in either mouse mutant. The foveomacular lesions often observed in patients with CNGA3- and CNGB3-linked ACHM (9) are likely due to the loss of cone photoreceptors in the primate macula and fovea, the anatomical feature with the highest cone density, which is not present in the murine retina.

Interestingly, M-opsin–positive cell counts were found to be reduced in aged triallelic Cnga3+/− Cngb3R403Q/R403Q mutants. Differences in the expression, distribution, and/or susceptibility to degeneration of both M- and S-cones have been described in several studies (47–50). Also, arrestin levels in Cngb3R403Q/R403Q genotypes were diminished beginning at 4–5 weeks of age. Altered expression of cone arrestin was indeed observed in mice during cone degeneration (36, 51–53).

Intriguingly, Cnga3+/− Cngb3R403Q/R403Q mutants showed pronounced cGMP accumulation at 7–12 months of age. cGMP was described as a biomarker for photoreceptor dysfunction in a treatment study on the murine ACHM model, indicating an attempt of the cell to overcome the lack of channel activity by a reversible upregulation of the driving factor (31). Thus, the observed differences in cGMP accumulation between the different mutants very probably reflect the degree of overall CNG channel functionality in photoreceptors in the in vivo situation, incorporating factors like trafficking which are hard to model ex vivo. Also, in other, less specific retinal degeneration mouse mutants, affected photo-
receptors accumulate vast amounts of cGMP (32). This accumulation was absent in respective controls and hardly detectable in Cnga3+/− Cngb3R403Q/+ mice, underpinning the important aggravation of cone impairment due to the loss of 1 Cnga3 allele, which on its own (i.e., in Cnga3+/− mice) does not cause an impaired visual or retinal phenotype (29).

Taken together, the results show that Cnga3+/− Cngb3R403Q/+ and Cnga3+/− Cngb3R403Q/R403Q mutants recapitulate the principal defect in cone function and morphology observed in patients with homologous genotypes, although some differences exist due to (i) lack of a cone-rich macula and therefore attenuation of the murine homologous genotypes, although some differences exist due to (i) defect in cone function and morphology observed in patients with ciliopathies associated with defective ciliary trafficking and cargo shuttling in photoreceptors (64, 65). Protein defects result in its own (i.e., in Cnga3+/− mice) does not cause an impaired visual or retinal phenotype (29).

With comprehensive genetic testing now being practiced in medical genetics, the number of reported instances of digenic inheritance of disease in human patients increases. However, only a fraction of those reports withstand thorough validation, such as (i) replication of the findings in multiple independent patients or families, as shown in Table 1 and Supplemental Table 1; (ii) validation of the pathogenicity of the variants involved by means of genetic evidence (e.g., recurrent mutation in affected patients or cosegregation of the variant with disease in families, as shown in Figure 1) or preferably by phenotypical analysis of corresponding knockin mouse models, as realized in our triallelic Cnga3+/− Cngb3R403Q/+ mouse; (iii) direct or indirect physical interaction of the 2 involved gene products as part of a multimeric protein complex or their participation in the same biochemical or signaling pathway that is suggested for CNGA3 and CNGB3; and (iv) modeling of the digenic interaction in an appropriate cellular or animal model with adequate readout (e.g., comparative analysis of Cnga3+/− Cngb3R403Q/+ and Cnga3+/− Cngb3R403Q/R403Q mice). A classic and commonly cited example of digenic inheritance in inherited retinal dystrophies is retinitis pigmentosa caused by simultaneous mutations in the PRPH2 (RDS/ peripherin) and the ROM1 gene (57, 58). Functional defects in the assembly of mutant RDS/ROM1 hetero-oligomers have been shown (59–61). However, no confirmation of the digenic interaction was present in 10 of 16 subjects carrying the CNGB3/p.R403Q allele in this study; (ii) all CNGB3 and CNAGA variants observed in the triallelic genotypes were validated as pathogenic mutations by genetic criteria (Supplemental Table 2; i.e., recurrently observed in ACHM patients, concordant segregation in families), and their obvious deleterious consequences were shown at the transcript or protein level (c.1578+1G>A and p.Thr383Ifs*13 in CNGB3; p.W440* and c.57-1G>C in CNGA3) and/or by functional analysis in heterogeneous expression systems or in an animal model (Cngb3R403Q/+ mice) in this study); (iii) a direct physical interaction of CNGB3 and CNAGA is required for the formation of the native heteromeric cone CNG channel, for mutual protein stability, and likely also for transport to the photoreceptor outer segment (29, 30, 74, 75); and (iv) we modeled the digenic interaction in the Cnga3+/− Cngb3R403Q/+ mouse and demonstrated the additive effect on visual function and cone photoreceptor integrity by means of ERG recordings and retinal histopathology. In summary, we describe a digenic triallelic inheritance pattern for cone retinopathies supported by data from patients and targeted knockin mice, with strong clinical implications for prognosis.

Methods

Molecular genetic analysis. DNA was isolated from peripheral blood according to standard procedures at the different centers, and banked at the Institute for Ophthalmic Research, Tübingen, as per the standard protocol. All coding exons and flanking intronic and UTR sequences of CNGB3 (RefSeq NM_019098) and CNGA3 (RefSeq NM_001298) were analyzed as reported previously (1, 2, 18, 19). For primer sequences, as well as PCR and sequencing conditions, see Supplemental Methods. All variants and genotypes were deposited to the ClinVar database (76), with accession codes for the single variants (SCV000700209–SCV000700226) listed in Supplemental Table 2.

Segregation analysis within the families was performed by PCR/RIFL or Sanger sequencing (Figure 1). For patients MDS49-II:1, CHRO852-II:1, CHRO16-II:1, and CD228-II:1, no family members were available. Therefore, homoygosity for the CNGB3/p.R403Q mutation was confirmed by quantitative real-time PCR (qRT-PCR), applying the Quantitect SYBR GreenPCR Kit (QIAGEN) for MDS49-II:1 and CHRO852-II:1 on an Applied Biosystems 7500 Real-Time PCR system following the manufacturer’s instructions and primers for CNGB3 exons 10 (forward: 5′-GGCTTG-TATTTCAGAAACAACATGA-3′, reverse: 5′-CACAGGGATAATGT-GACAA-3′), 11 (forward: 5′-CTTCCAGACCCACGCTTATCA-3′, reverse: 5′-CAAAAATGACACGGTCTGATC-3′), 12 (forward: 5′-CATGTCACAACTGGATTAATTTGAC-3′, reverse: 5′-TTGCTT-GTACGTGCTCCAT-3′) and the reference gene SDC4 (forward: 5′-CAGGCTCTGAGGCACAG-3′, reverse: 5′-GCACAGTGCTGGA-
CATGGACA-3'). In addition, for the p.R403Q-homozygous patients MDS49-II:1, CHRO852-II:1, and CHRO16-II:1, exome sequencing was performed to exclude mutations in other genes known to be associated with inherited retinal dystrophies as listed in RetNet (https://sph.uth.edu/Retnet/), as previously described (77).

To test the effect of the variant c.-37-1G>C on splicing, a 714-bp fragment comprising the first coding CNGA3 exon with 295 bp of upstream and 419 bp of downstream sequence was amplified using a proofreading polymerase and genomic DNA from patient MDS49-II:1, thereby co-amplifying the normal and the mutant allele. Cloning into the exon-trapping vector pSPL3, transfection of HEK293T cells as well as murine 661W photoreceptor-derived cells, RNA isolation, and cDNA synthesis were performed as described previously (78, 79). The HEK293T cell line was purchased from ATCC. The murine cone photoreceptor–derived 661W cells were provided by Muayyad R. Al-Ubaidi (University of Oklahoma Health Sciences Center).

Cell culture and heterologous expression of CNGA3/p.R290H. HEK293 cells (Deutsche Sammlung von Mikroorganismen und Zellkulturen [DSMZ]) were maintained in DMEM medium (Thermo Fisher Scientific) supplemented with 10% FBS, 100 U/ml penicillin, and 100 μg/ml streptomycin and incubated at 37°C with 5% CO₂. For transfection experiments HEK293 cells were seeded on 35-mm petri dishes at a density of 200,000 cells per dish. After 6 hours, cells were transfected with the expression plasmid DNA (1.5 μg of each plasmid per dish) using the TurboFect transfection reagent (Thermo Fisher Scientific). For electrophysiological measurements, transfected cells were detached using 0.05% trypsin/0.53 mM EDTA (Thermo Fisher Scientific) and replated onto 12-mm poly-L-lysine-coated coverslips in 24-well plates (23).

Electrophysiological measurement of channels containing CNGA3/p.R290H. Currents of heterologously expressed CNG channels were measured at room temperature 2–3 days after transfection using excised inside-out voltage clamp configuration. Transfected cells were identified by green fluorescence due to EGFP expression encoded by an IRES2-EGFP sequence within the CNG channel expression cassette of the plasmid. The bath and pipette solutions were composed of (in mM): 140 NaCl, 5 KCl, 10 HEPES, 1 EGTA, pH 7.4 adjusted with NaOH. Pipettes were pulled from borosilicate glass capillaries (GC150TF, Harvard Apparatus) and had resistances of 2–3 MΩ when filled with the pipette solution. cGMP and cAMP were purchased from Sigma-Aldrich. L-(-)-cis-diltiazem hydrochloride was purchased from Enzo Life Sciences. cGMP and cAMP solutions were dissolved in bath solution directly. Stock solution of L-cis-diltiazem was prepared in water and was freshly diluted in bath solution before use in experiments. Data were acquired at 10 kHz using an Axopatch 200B amplifier and pClamp 10 (Axon Instruments). Voltage clamp data were stored on a computer hard disk and analyzed off-line by using Clampfit 10 (Axon Instruments). Leakage current was removed by subtraction of current without cGMP or cAMP. Dose-response curves were determined by fitting with the Hill function unless otherwise specified.

Generation of the CNGB3/p.R403Q-knockin mouse model. The p.R403Q mutation results in an exchange of arginine into glutamine, which could be achieved with 2 different codons: CAG and CAA. Corresponding to the preferred codon usage in mice, we chose the CAG codon for construction of the CNGB3/p.R403Q targeting vector.

The primers Cngb3_FMM:5’-CTCTCCTGAGATGAGACCCT-3’, Cngb3_RMM: 5’-AACTCTACTGAGATGAGACCCT-3’, Cngb3_F_CAG: 5’TATTGGGCCAGTTCAGACTTTAAT-3’, and Cngb3_R_CAG: 5’-ATTAAGTCTGAACTGCCCAATA-3’ were used to introduce the p.R403Q mutation. Moreover, the use of the CAG codon enabled subsequent analysis of the p.R403Q mutation via PCR/RFLP due to a loss of a TaqI restriction site and generation of a novel HpyI88I restriction site compared with the WT sequence.

The CNGB3 homology arm fragments for the assembly of the target construct were subcloned from a BAC isolated from a 129/Sv mouse BAC library (Deutsches Ressourcenzentrum für Genomforschung [RZPD]). The targeting vector contained a Neo/Tk selection cassette flanked by 2 loci ofloxP sites located upstream of exon 11 and a single loxP site together with a new SphI restriction site (for subsequent identification of the homologous recombination by Southern blot analysis) in intron 10 (Supplemental Figure 9). RI embryonic stem (ES) cells were electroporated with the linearized targeting construct and screened for G418-resistant clones. Homologous recombination was confirmed by Southern blot analysis upon Mcm1–, Sphl–, and BamHI-digested ES cell DNA. Two correctly targeted clones were injected into C57BL/6 blastocysts. The resulting chimeras were mated with C57BL/6N and 129/Sv mice to obtain germline transmission, resulting in heterozygous CNGB3/p.R403Q offspring. Heterozygous offspring (genotype: Cngb3_p.R403Q/WT) were intercrossed to establish homozygous Cngb3-mutant mice (Cngb3_p.R403Q/p.R403Q) and littermate control animals for the experiments. Cngb3_p.R403Q/WT mice were also crossed with Cnga3-/- mice to obtain Cnga3-/-Cngb3_p.R403Q mice, which were intercrossed to obtain Cnga3-/-Cngb3_p.R403Q/p.R403Q mutant mice and the corresponding Cnga3-/- and WT controls.

Genotyping of CNGB3/p.R403Q mutants. Animals were genotyped by PCR using genomic DNA extracted from mouse tails with 2 primers for Cngb3 (F1: 5’-GTCGACTAGAGCTGCCAAAC-3’; R: 5’-AATATTGTAGTCTCTTGCCTT-3’) that amplified either the WT (220 bp) or the Cngb3-knockin allele (366 bp) (Supplemental Figure 9F), and 5 primers for Cnga3 (F1: 5’-CTATGGTTCTCTTGAGGCAAG-3’; F2: 5’-GGCTGTCCTTACGACGAC-3’; R1: 5’-CAAGTTCCCTATCTGCAGAC-3’) that yielded either the WT (248 bp) or Cnga3-KO allele (340 bp). Furthermore, animals on a hybrid background (129/Sv x C57BL6/N) were tested for the presence of the rd8 allele to exclude tampering or aggravation of investigated phenotypes with primers (MM_RD8_F: 5’-GGCCCTGTTTTCAGGAAGACTACAGAATGATGCT-3’d; MM_RD8_R: 5’-GCCCCAATTGCAACATGTAC-3’), resulting in a 244-bp amplion that can be cleaved by NdeI into a 45-bp and a 199-bp fragment if the rd8 mutation is present.

Electroretinography. Full-field ERGs were recorded from Cng3a-/-, Cnga3-/-, Cngb3_p.R403Q/p.R403Q, and Cngb3_p.R403Q/p.R403Q littermate mice at the age of 4–5 weeks or 8–12 months according to procedures described previously (80). In brief, mice were dark-adapted overnight before the experiments and anesthetized with s.c. injection of a mixture of ketamine (66.7 mg/kg body weight) and xylazine (11.7 mg/kg body weight). The pupils were dilated, and single-flash ERGs were obtained under dark-adapted (no background illumination, 0 cd/m²) and light-adapted (background illumination of 30 cd/m² starting 10 minutes before recording) conditions. Single white-flash stimuli ranged from -4.0 to 1.5 log cd·s/m² under dark-adapted and from -2.0 to 1.5 log cd·s/m² under light-adapted conditions. Ten responses were averaged with inter-stimulus intervals of 5 seconds (for –4 to –0.5 log cd·s/m²) or 17 seconds (for 0 to 1.5 log cd·s/m²). Responses...
to series of brief flashes (flicker) at a fixed intensity (0.5 log cd×s/m²) with 12 frequencies (0.5, 1, 2, 3, 5, 7, 10, 12, 15, 18, 20, and 30 Hz) were performed without any background illumination (0 cd/m²) and were averaged either 20 times (for 0.5 to 3 Hz) or 30 times (for 5 Hz and above) (81). Band-pass filter cutoff frequencies were 0.3 and 300 Hz for all ERG recordings.

SLO and OCT. SLO and OCT imaging was done in the same session as the ERGs in Cngb3+/–, Cnga3+/–, Cngb3R403Q/R403Q, and Cnga3–/–Cngb3+/– mice. SLOs and OCTs were obtained as reported previously (82). Analysis were performed using an s.c. injection of 75 mg/kg body weight fluorescein-Na (University Pharmacy, University of Tübingen) and ICGA following an s.c. injection of 50 mg/kg body weight ICG (ICG-Pulsion, Pulsion Medical Systems).

SD-OCT imaging was performed with a Spectralis HRA+OCT device from Heidelberg Engineering featuring a broadband superluminescent diode at 1/4 870 nm as low coherent light source. Each 2-dimensional B-scan recorded with the equipment was set to 308 field of view consisted of 1,536 A-scans acquired at a speed of 40,000 scans per second. Optical depth resolution was 7 μm, with digital resolution reaching 3.5 mm. Image data were analyzed using the proprietary software package Eye Explorer from Heidelberg Engineering.

Generation of anti-CNGB3 rabbit antiserum. CNGB3 antigen was obtained from the N-terminal (208 amino acid residues) part of the murine CNGB3 WT protein. The cDNA was cloned into a PRSET expression vector (Invitrogen/Thermo Fisher Scientific) containing a 6xHis-tag. The expression vector was used to transform E. coli BL21-Gold(DE3)pLysS cells, enabling stable and reliable expression controlled by the IPTG-inducible lacUV5 promoter. Transformed BL21-Gold(DE3)pLysS cells were cultured in 200 ml super optimal broth media with additional 2 ml MgCl₂ solution (1 mol/l), 400 μl ampicillin, and 300 μl chloramphenicol. After reaching an OD₆₀₀ of 0.5, protein expression was induced by addition of IPTG (1 mM) for 3 hours. Bacteria were harvested with an OD₆₀₀ of 1.0, and the CNGB3 protein fragment was purified with Ni²⁺-NTA columns (Qiagen). Protein size was determined using denaturing discontinuous gel electrophoresis (83). For subsequent immunization of rabbits, a total of 2 mg purified CNgb3 fragment was used (~500 μg/rabbit). Immunization was performed by PINEDA antibody service, and serum was taken 1 day before immunization (preimmune serum) and on days 61, 90, and 120. Antiserum was tested with material from WT mice by means of Western blotting and immunohistochemical methods.

Immunoblotting of proteins from murine retina. Mouse eyes were enucleated and homogenized (Ultra-Turrax) in homogenization buffer (20 mM Tris-HCl pH 8.3, 0.67% SDS, 238 mM β-mercaptoethanol, 0.2 mM PMSF). Protein extraction was performed with pooled mouse retinas (n = 10 per genotype). Western blot analysis was done according to a previously established protocol (74). WT retinas were used as positive controls, and retinas from Cnga3–/– mice were used as negative controls. Extracted proteins were separated by their molecular weight using denaturing 17.5% SDS-PAGE electrophoresis.

qRT-PCR. Total RNA extraction was performed using the RNasy Mini Kit (Qiagen) according to the manufacturer’s protocol. RNA quality was analyzed on an Agilent Bioanalyzer (Agilent Technologies). Reverse transcription-PCR (RT-PCR) was performed using the RevertAid First Strand cDNA Synthesis Kit (Thermo Fisher Scientific). qRT-PCR was performed on a LightCycler 480 System (Roche Applied Science) using GoTaq qPCR Master Mix (Promega). Six different biological samples were analyzed in duplicate and normalized to the expression of the housekeeping gene aminolevulinic acid synthase (Alas). Relative quantification was determined by the method described by Pfaffl (84). The following primers were used (5′−3′ orientation): Cnga3 forward: CCACCCCCCGTGAAAGAGTA, Cnga3 reverse: GGAGTCGATCTTAGCTGGA, Cngb3 forward: GTTGTGGCCACCGGATTGTGC, Cngb3 reverse: GTTGTGGCCACCGGATTGTGC, ALAS forward: TCGCGGATGCCCCATTCTTATC, ALAS reverse: GGCCCCAATCTCCACATCT.

Immunohistochemistry of the murine retina. Immunohistochemical staining was performed on retinal cryosections according to procedures described previously (74). In brief, enucleated eyes were punctured with a needle (ora serrata) and fixed with 4% PFA in 0.1 M phosphate buffer (PB) for 5 minutes. Cornea and lens were removed, and the residual eye cup was fixed for 45 minutes in 4% PFA/PB and washed 3 times (0.1 M PB). Subsequently, the eye cup was incubated overnight in 30% sucrose/PB. After embedding in tissue freezing medium (Tissue-Tek O.C.T Compound, Sakura Finetech), vertical cryosections were cut at 10 μm and stored at −20°C until use. The retina slices were rehydrated with 0.1 M PB and then fixed for 10 minutes with 4% PFA. After 3 washing steps (0.1 M PB), slices were incubated with primary antibody overnight at 4°C in a solution of 0.1 M PB, 5% chemiBLOCKER (Merck Millipore), and 0.3% Triton X-100. Subsequently, the slices were washed 3 times in 0.1 M PB, before proceeding with secondary detection using Alexa Fluor 488 anti-mouse or rabbit IgG F(ab')2, fragments (Cell Signaling Technology) or anti-guinea pig IgG (Mobitec) or Cy3 anti-mouse or anti-rabbit IgG (Jackson ImmunoResearch Laboratories Inc.). The cell nuclei were stained with Hoechst 33342. Finally, the sections were washed (0.1 M PB) and covered with coverslips. Multicolor laser scanning confocal micrographs were taken using an LSM 510 Meta microscope (Zeiss). The following primary antibodies were used: rabbit anti-CNGA3 (85) (1:3,000), rabbit anti-M-OPSin (1:300; AB5405, Merck Millipore), rabbit anti-S-OPSin (1:300; AB5407, Merck Millipore), rabbit anti-cone arrestin (86) (1:500), and sheep anti-cGMP (51, 87) (1:3,000), as well as rabbit antiserum against CNGB3 (see Generation of anti-CNGB3 rabbit antiserum) (1:5,000).

Study approval: human subjects and clinical examination. Study participants were recruited over 20 years from international collaborating centers (Centre for Ophthalmology, Tübingen, Germany; Augenzentrum Siegburg, Germany; University Eye Hospital Bonn, Germany; McGill Ocular Genetics Centre, Montreal, Quebec, Canada; University Eye Hospital Munich, Germany; Kellogg Eye Center, Ann Arbor, Michigan, USA; The National Eye Institute, Bethesda, Maryland, USA; Casey Eye Institute, Portland, Oregon, USA; and Institut des Neurosciences, Montpellier, France) specializing in inherited retinal diseases. Blood or DNA samples were sent to the Centre for Ophthalmology, University of Tübingen, for genetic investigation. Clinical and genetic studies were performed according to the tenets of the Declaration of Helsinki and approved by the respective local research and ethical review boards (Ethics Committee, Medical Faculty, University Tübingen, Germany; Ethics Committee, Medical Faculty, University of Bonn, Germany; Ethics Committee, Medical Faculty, University of Munich, Germany; University of Michigan Medical School Institutional Review Board, Ann Arbor, MI, USA; Oregon Health & Science University Institutional Review Board, Portland, OR, USA; McGill University Institutional Review Board, Montreal, Canada; the Ministry of Public Health of France.), and all participants provided written informed consent.
Patients underwent comprehensive ophthalmological examination including — varying and depending on the different centers — psychophysical testing (best-corrected visual acuity, color vision), electrophysiological assessment (i.e., full-field and multifocal ERG), and retinal imaging (i.e., color fundus photography, fundus autofluorescence [FAF], and OCT). Color vision was assessed with various tests, including Ishihara plates, Lanthony Tritan album (LTA), American Optical Hardy-Rand-Rittler (AOHRR), saturated Roth 28-hue test, Farnsworth Munsell 100-hue tests, and the Nagel anomaloscope. Full-field ERG and multifocal ERG recordings were measured in accordance with International Society for Clinical Electrophysiology of Vision (ISCEV) recommendations.

Study approval: animal welfare and genetic background. Experimental mice were bred and maintained at the animal facility of the Institute of Pharmacy, Department of Pharmacology, Toxicology, and Clinical Pharmacy, University of Tübingen. All procedures with respect to mice were performed with permission of local authorities (Regierungsspräsidium Tübingen, Tübingen, Germany and Regierungsspräsidium Karlsruhe, Karlsruhe, Germany) and conducted in accordance with German legislation on the protection of animals. The mice were housed in temperature- and humidity-controlled cages with unrestricted access to food and water in a standard 12-hour light/12-hour dark cycle. For experiments, Cngb3^{R403Q/R403Q} and Cnga3^{p.R290H/p.R290H} mutant mice were compared with age- or age- and litter-matched WT mice or Cnga3^{p.R290H} mice on a hybrid 129/Sv × C57BL/6 or pure 129/Sv genetic background. Mice were used irrespective of their sex at 4–52 weeks of age. Cnga3^{p.R290H} mice (29) were on a 129/Sv genetic background. The Cngb3^{R403Q/R403Q} mice that were generated for this study were either on a 129/Sv background or on a hybrid background (C57BL/6N × 129/Sv) as specified in the corresponding figure legends. Cngb3^{p.R290H} mice (30) (Supplemental Figure 4) were on C57BL/6J background.

Statistics. Electrophysiological data from HEK293 experiments are presented as mean ± SEM (n indicates number of recorded cells). Student’s 2-tailed t test or one-way ANOVA was calculated with Origin6.1 (OriginLab). qRT-PCR data are presented as mean ± SEM (n indicates number of animals). One-way ANOVA was performed with GraphPad Prism 5 (GraphPad Software). Box-and-whisker plots were used to present ERG data distribution of VlogI (amplitude versus log intensity) graph, where boxes indicate 25%–75% quantile range, whiskers 5% and 95% quantiles, and asterisks the median of data.

Author contributions

BW and PR originally developed the concept and designed the experiments together with M Burkard, SK, TK, CB, PR, and RL. SK, AKM, BB, and NW generated, analyzed, and interpreted the genetic data. SK, DZ, and GAH compiled the clinical data from patients. M Burkard and TK generated the Cngb3^{R403Q/R403Q} knock-in mouse. M Burkard characterized the mutant mouse line. M Burkard, SK, NT, XZ, CB, TK, AEB, PR, VS, SCB, GH, AKM, KJ, and BB performed the experiments. MS, NT, VS, SCB, and GH planned, established, and performed the ERG, SLO, and OCT animal experiments. FK, EB, and SM planned, established, and performed the immunofluorescence, qRT-PCR, and Western blot experiments. XQD and SV analyzed and interpreted experimental data. M Biel and XZ planned and performed the experiments on the CNGA3/p.R290H variant. DZ, GAH, UK, PCI, RKK, GR, JH, PS, RGW, and CH clinically examined the patients and provided clinical data. M Burkard, SK, SM, MWS, BW, and PR interpreted the data and wrote the manuscript. All authors read, revised, and approved the final manuscript.

Acknowledgments

We thank Sui Mei Chiu for patient referral, Kinga Bujakowska and Eric Pierce for supplying DNA of the probands published in ref. 26, Michel Michaelides for his willingness to discuss the case presented in ref. 27, and Fred Koch for his help in phenotypical mouse analysis. The study was supported by grants from the Deutsche Forschungsgemeinschaft (KFO134) to SK, BW, and PR, and BMBF grant 01GM1108A from the German Federal Ministry of Research and Education to SK and BW. M Burkard and SV were further supported by grants from the Institutional Strategy of the Eberhard Karls University of Tübingen (Deutsche Forschungsgemeinschaft [DFG], ZUK 63), from the Wissenschaftsfoerderung der Deutschen Brauwirtschaft e.V. project B103, and the European Foundation for Alcohol Research (ERAB; ref. EA 15 28), and grants from Wissenschaftsfoerderung der Deutschen Brauwirtschaft e.V. project B103 and the European Foundation for Alcohol Research (ERAB; ref. EA 15 28).

PCL was supported by the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC). Finally, we acknowledge support from Deutsche Forschungsgemeinschaft and the Open Access Publishing Fund of University of Tübingen. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health.

Address correspondence to: Bernd Wissinger, Molecular Genetics Laboratory, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen,Elfriede-Authorn-Strasse 5-7, 72076 Tübingen, Germany. Phone: 49.0.7071.29.85032; Email: wissinger@uni-tuebingen.de. Or to: Peter Ruth, Pharmacology, Toxicology and Clinical Pharmacy, Pharmaceutical Institute, Auf der Morgenstelle 8, 72076 Tübingen, Germany. Phone: 49.7071.2978795; Email: Peter.Ruth@uni-tuebingen.de.
