Supplementary Figure 1. Hematocrits obtained from blood analysis in hematoanalyser also confirmed that VhF^{200W} mice (red filled circles) developed erythrocytosis/polycythemia at early ages. Black filled circles represent their WT littermates.
Supplementary Figure 2. Additional CBC parameters, serum ferritin and serum glucose levels of WT and Vh/R200W mice in control and Tempol supplemented diets. (A) Hematocrits obtained from blood analysis in IDEXX hematoanalyzer were also elevated in control diet Vh/R200W mice, whereas Tempol supplementation significantly reduced hematocrits (**p<0.001). These IDEXX hematoanalyzer hematocrits are about 4% higher than those determined using the capillary tube centrifugation method. (B) MCV, (C) MCH, (D) MCHC, (E) Reticulocyte, (F) WBC, and (G) platelet did not change significantly in Vh/R200W mice, and Tempol supplementation did not change these parameters either (n = 7 for each group). (H) No significant change was observed in serum glucose levels of these Vh/R200W mice (n = 4). (I) Serum ferritin levels were significantly higher in Vh/R200W mice, compared to WT mice in control diets (n = 9).
Supplementary Figure 3. (A) Kidney glucose transporter 1 (Glut1) mRNA levels, and (B) Lung VEGF mRNA levels of WT mice in control food, and VHL^{R200W} mice fed with control and Tempol foods showed that expression levels of Glut1 and VEGF remained unchanged in VHL^{R200W} mice, and remained unaffected by the Tempol diet as well.
Supplementary Figure 4. (A) MCV, (B) MCH, (C) MCHC, (D) reticulocyte, (E) WBC, and (F) platelet counts did not change significantly in control (Cont) diet or Tempol (Temp) diet fed VhP200W mice, Irp1−/− mice and VhP200W;Irpl−/− mice. For each group, n = 7.